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Abstract  6 

The open literature continues to voice concerns with regard to the fundamental challenge of 7 

opaqueness in machine learning (ML). This dilemma emerges from the tension between harnessing 8 

algorithms and maintaining oversight when ML models operate in critical environments. From this 9 

lens, this paper sheds light on key philosophical aspects of the problem of limited interpretability, 10 

highlights the difficulties in ensuring reliable deployment, and presents a framework to overcome 11 

the aforementioned challenge. The proposed framework integrates three elemental standpoints: 12 

Dataism, reflecting the unwavering reliance on data in ML for decision-making; Skepticism, 13 

ensuring vigilant scrutiny of model outcomes and bias; and Intuition, underlining the experiential 14 

wisdom embedded in domain expertise. By mapping these standpoints onto the proposed DSI 15 

framework, we show how each standpoint offers distinct and converging benefits. This paper 16 

showcases the proposed framework through a theoretical analysis that focuses on real-world ML 17 

deployments to demonstrate how a balanced consideration of the three standpoints can alleviate 18 

concerns surrounding interpretability and contextual understanding. Finally, this study also 19 

provides a philosophical and technical critique of the proposed framework and shares strategies 20 

for melding data-driven decision-making with human oversight to serve as a blueprint for 21 

transparent ML practices – especially in engineering domains. 22 

Keywords: Artificial intelligence, Philosophy, Explainability. 23 

1.0 Introduction 24 

Machine learning (ML) sets a precedent for reshaping engineering practice by enabling highly 25 

adaptive and predictive systems. However, despite the documentation of successful studies, many 26 

ML models remain opaque, which makes it difficult to ascertain how they arrive at specific 27 

predictions or recommendations [1,2]. This opacity is not merely a theoretical concern; it poses 28 

tangible risks for real-world applications where confidence in a model's output can have adverse 29 

consequences. For example, an error from misinterpreting a blackbox model in engineering 30 

contexts can cause unexpected damage or compromise public safety [3]. In parallel, regulatory 31 

demands intensify, which are not only expected but also require thorough audits to understand a 32 

given model's underlying logic. The challenge is that modern ML architectures, particularly those 33 

categorized as deep neural networks, can be so intricate that even developers struggle to explain 34 

how particular outputs are generated [4]. 35 

The above dilemma ties directly to issues of trust and accountability [5]. When neither developers 36 

nor users can interpret how a ML model functions, it becomes difficult to spot errors or biases until 37 

they manifest as failures. This can be further amplified in engineering, where the margin of error 38 

is minimal, and hence obscured processes threaten not only model integrity but also ethical/legal 39 

obligations [6]. Take the following observation: many ML techniques deliver impressive accuracy, 40 

yet relying on them without understanding their rationale can lead to vulnerabilities that undermine 41 

the value of accuracy [3,7]. While research on explainable AI has provided a range of tools for 42 
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dissecting model behavior, many solutions remain too narrow for the complex scenarios engineers 43 

face [8]. 44 

The opacity of ML also brings broader societal and philosophical questions. From this perspective, 45 

ML methods illustrate a shift wherein big data guides algorithmic behavior. This aligns with what 46 

has been described as dataism, an ideology that entrusts data with the power to reveal truths more 47 

objectively than humans can [9]. On the surface, this stance appears logical: data is abundant, and 48 

computational resources enable patterns to be uncovered at scale. Nevertheless, a singular focus 49 

on data can lead to complacency if engineers assume that large volumes of data inherently yield 50 

correct insights [10]. Such assumptions risk overlooking data quality/health properties or missing 51 

critical context that data alone cannot capture. Moreover, engineering judgments often extend 52 

beyond purely quantitative considerations and encompass domain-specific knowledge and ethical 53 

imperatives that raw data may not fully encapsulate. 54 

In parallel, engineers must contend with a more critical outlook epitomized by skepticism. This 55 

perspective holds that any claim, including ML model predictions, demands rigorous scrutiny 56 

before acceptance. Skepticism is parallel to engineering's traditional emphasis on preventing 57 

overconfidence in unverified systems [11]. Thus, balancing skepticism with a willingness to 58 

experiment becomes vital when the goal is not only to harness ML techniques but also to ensure 59 

they meet rigorous standards often required by engineering codes or industry expectations. 60 

A third dimension of engineering practice, intuition, reflects the practical wisdom gathered from 61 

hands-on experience and contextual awareness [12]. Many engineering decisions are made under 62 

time constraints and uncertain conditions that defy exhaustive data collection – and in many cases, 63 

data on such conditions may not be easily attainable. Further, seasoned professionals often rely on 64 

intuition to anticipate problems that have not yet surfaced [13]. Although some might question the 65 

reliability of subjective judgment, intuition has historically guided critical design choices and 66 

problem-solving strategies, especially when precedent or formal specifications are lacking. 67 

Integrating intuitive checks and the domain's trusted knowledge in ML contexts can help identify 68 

anomalies or plausible errors that might slip past purely data-driven analyses [14]. 69 

The above contrasts with purely technical explorations of interpretability, which often concentrate 70 

on methods for generating feature attributions or rule-based approximations [15]. While such 71 

techniques can be beneficial, they only partially address the deeper concerns when engineers are 72 

tasked with defending or refining ML models in vital scenarios. Furthermore, prior work has 73 

examined ethical and social facets of algorithms but has rarely engaged directly with the interplay 74 

between ML enthusiasm, skeptical rigor, and the intuitive dimension of engineering [16]. This 75 

brings a key motivation for this paper that stems from the observation that interpretability must be 76 

woven into the entire lifecycle of engineering projects [17].  77 

As one can see, this paper takes the position that engineering challenges surrounding opaque ML 78 

models become more tractable when analyzed through the combined lens of dataism, skepticism, 79 

and intuition. Each philosophical standpoint provides a distinct vantage point, but their intersection 80 

can yield a more nuanced approach to ML interpretability. In a broader view, engineers can employ 81 

data-focused methods to harness large-scale computational insights, remain skeptical about 82 

validating those insights systematically, and still rely on professional intuition to detect corner 83 

cases that structured analysis might overlook. Although the synergy of these standpoints seems 84 
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organic in theory, it is rarely addressed holistically in the literature. This study aims to clarify how 85 

these standpoints can operate in tandem to enhance model interpretability. Our contribution is 86 

twofold. First, we propose a conceptual framework that articulates how dataism, skepticism, and 87 

intuition (DSI) each influence ML systems. Second, we reinforce the DSI framework through a 88 

deep philosophical and technical critique against well known frameworks and theories.  89 

2.0 Background and literature review  90 

Despite the ongoing effort aimed at demystifying ML models, as well as the rise in interpretability 91 

methods (such as LIME [5] and SHAP [18]), the key related challenge of the absence of a unified 92 

definition of interpretability remains [19]. Thus, opaque models also persist because many 93 

algorithms embed knowledge in high-dimensional representations that resist human 94 

understanding.  95 

This opacity is especially critical in engineering contexts where meaningful explanations are 96 

necessary to comply with industry standards and maintain operational continuity [20]. A 97 

companion notion to that aforenoted is that the open literature notes that interpretability methods 98 

can demand significant computational overhead. As such, their applicability in large-scale systems 99 

or real-time operations can be limited [21,22]. Such interpretability methods simply produce 100 

feature attributions and are unlikely to integrate context-specific nuances or address systemic 101 

biases hidden in the dataset. The debate continues over whether post-hoc explanation methods, 102 

which elucidate decisions after a blackbox model has been trained, offer sufficient transparency. 103 

Proponents argue that these methods preserve performance while offering partial insights. In 104 

contrast, opponents maintain that intrinsically interpretable models (e.g., simpler architectures) are 105 

necessary to guarantee accountability and proof of reliability [23].  106 

This divergence highlights the broader tension between embracing data-rich methods that may be 107 

difficult to interpret and prioritizing an easily scrutinized architecture that is potentially less 108 

powerful. The above debate also infers that dataism often gravitates toward post-hoc tools (trusting 109 

performance results), while skepticism favors transparent or intrinsically interpretable models to 110 

satisfy thorough verification requirements. Intuition can leverage either approach, depending on 111 

the specific demands of an engineering context. Despite increased awareness of these issues, the 112 

literature rarely addresses how to balance these three standpoints without undermining one 113 

another. 114 

Another gap involves the cultural and organizational dimensions of interpretability [24]. Some 115 

researchers emphasize that adopting interpretability techniques is not just a matter of selecting the 116 

right technical tool but also shifting institutional mindsets [25]. For example, even when state-of-117 

the-art explainability methods are employed to illuminate a model's decision-making process, the 118 

impact of these techniques can be undermined by a prevailing dataist culture. In organizations 119 

where decisions are driven almost exclusively by raw performance metrics, explanations generated 120 

by these methods may be seen as secondary or even unnecessary – which can be concerning in an 121 

engineering context. 122 

In contrast, highly regulated industries often necessitate a rigorous examination of model outputs 123 

to satisfy legal and ethical standards [26]. For instance, a deep learning model for diagnosing 124 

conditions might be paired with counterfactual explanations or attention mechanisms to trace how 125 



This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s43681-025-00831-4.  
 
Please cite this paper as:  
Naser M.Z., (2025). Dataism, skepticism, and intuition for interpretable machine learning. AI Ethics. 
https://doi.org/10.1007/s43681-025-00831-4 

4 
 

particular features contribute to a prediction [27]. This additional layer of interpretability supports 126 

compliance with regulatory requirements and builds trust among engineers and stakeholders. 127 

However, the complexity of these technical tools may create friction with existing institutional 128 

practices. Regulatory environments can foster a culture of skepticism, where decision-makers 129 

favor simpler, well-understood models (like logistic regression), even if advanced neural networks 130 

with interpretability techniques offer superior predictive performance. 131 

These observations suggest a need for a cohesive framework that systematically integrates dataism, 132 

skepticism, and intuition in addressing blackbox models. Rather than treating these perspectives 133 

as mutually exclusive, the goal should be to elucidate how they converge to create transparent 134 

solutions. Such a framework would highlight the conditions under which data-rich approaches are 135 

beneficial, identify when skepticism should trigger further validation, and clarify how intuition 136 

can detect anomalies or emergent properties not captured by formal models. The upcoming 137 

sections tackle these issues and illustrate how a balanced synthesis can guide engineers to better 138 

manage the interpretability of complex ML systems. 139 

3.0 Philosophical standpoints and their relevance in ML 140 

Machine learning systems, by virtue of their computational structure, frequently demand 141 

philosophical standpoints that help users understand why a given algorithm is trusted or distrusted. 142 

Here, we focus on reviewing the three standpoints of interest to this work, and Table 1 concisely 143 

summarizes this discussion. 144 

Table 1 Summary on DSI standpoints 145 

Standpoint Core Belief Strengths Weaknesses Key Practices 

Dataism Larger datasets and 
refined patterns lead 
to more accurate 
outputs. 

Empirical rigor, 
automation, and 
scalability in large-scale 
applications. 

May overlook data 
biases and pragmatic 
constraints, promoting 
complacency. 

Deep learning, 
hyperparameter 
tuning, and 
continual dataset 
refinement. 

Skepticism All claims about 
model performance 
must be rigorously 
tested before 
acceptance. 

Prevents blind 
deployment of flawed 
models through rigorous 
validation. 

Can slow innovation if 
validation is overly 
rigid, discouraging 
experimentation. 

Adversarial testing, 
independent 
audits, and stress 
testing. 

Intuition Experienced 
judgment helps 
identify system 
failures beyond data-
driven insights. 

Provides context-sensitive 
sanity checks, addressing 
gaps in data-based 
reasoning. 

Can embed personal 
biases and is not easily 
transferable or 
scalable. 

Domain heuristics, 
manual review of 
anomalies, and 
experience-based 
adjustments. 

 146 

Dataism rests on the premise that enlarging datasets and refining methods to capture complex 147 

patterns within them inevitably yields more accurate predictions [28]. From this view, dataism 148 

views human subjectivity as a liability, presuming that models can detect and encode subtleties 149 

that might elude human observers. This belief is rooted in the growth of big data methods that rely 150 

on exhaustive collection and analysis. This belief has also been repeatedly proved by the track 151 

record of ML breakthroughs in vision, language processing, and robotics, where accuracy often 152 
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correlates with the volume of training samples. Therefore, dataism continues to be favored in fields 153 

where predictive performance gains are a priority [29]. 154 

In more formal mathematical terms, dataism can be interpreted as the assumption that the empirical 155 

loss of a model fθ(x) decreases monotonically with increasing dataset size ∣D∣. Let 𝐿(𝑓𝜃, 𝐷) 156 

represent the empirical loss (e.g., mean squared error or cross-entropy) of a model fθ trained on a 157 

dataset D. A dataist perspective posits that if ∣D2∣ ≥ ∣D1∣ and both datasets are sampled from the 158 

same underlying distribution, then one often expects 159 

L(fθ, D2) ≤ L(fθ, D1)          (1) 160 

Although this monotonic relationship does not always hold perfectly due to biases or noise in D2, 161 

it reflects dataism's core belief that more comprehensive data coverage systematically improves a 162 

model's generalization. In practical large-scale scenarios, this principle drives methods such as 163 

continual retraining where D←D∪Dnew, with the understanding that each incremental expansion 164 

of D refines the parameter space θ. In doing so, dataists rely on the asymptotic convergence of θ 165 

toward an optimal θ* by assuming the underlying distribution remains sufficiently stationary1.  166 

Although dataism promotes empirical rigor, it can sometimes sideline pragmatic constraints, such 167 

as the time or expense required to collect representative data. Dataism can also encourage a sense 168 

of complacency, where engineers underestimate the need for critical reflection on data biases. This 169 

standpoint has its detractors, who caution that an uncritical reliance on data may sidestep important 170 

concerns regarding dataset completeness, representativeness, and quality [30]. Further, greater 171 

reliance on data leads to progressively fewer oversights [31]. Thus, engineers must remain alert to 172 

the mismatch between controlled experimental conditions and the messy realities of field 173 

applications. 174 

Skepticism counters the unchecked confidence in data by demanding thorough evidence before 175 

accepting any computational finding. In other words, skepticism, by contrast, requires that all 176 

assertions regarding model properties (e.g., efficacy, fairness, etc.) be rigorously tested before 177 

acceptance. This outlook aligns with longstanding engineering traditions, where every proposed 178 

solution is examined through physical tests or computer simulations before large-scale 179 

deployment.  180 

From a skeptical perspective, rigorous validation can be framed through the lens of probably 181 

approximately correct (PAC) learning or bounds on generalization error. For instance, given a 182 

hypothesis space H with complexity measure κ(H), one might impose a bound of the form shown 183 

below with high probability [32]. 184 

ℒtrue(𝑓θ)  ≤  ℒemp(𝑓θ, 𝐷)  +  𝒪(√κ(ℋ)/|𝐷|)         (2) 185 

Skeptics emphasize that one must demonstrate both a low empirical loss Lemp(fθ,D) and a 186 

sufficiently small penalty term 𝒪(√κ(ℋ)/|𝐷|) before trusting a model for real-world deployment. 187 

 
1 Critics of dataism point out that if the original sampling strategy produces biased data, the function 𝐿(𝑓𝜃 , 𝐷) might 
decrease in-sample but fail to account for critical subpopulations or edge cases (a limitation that purely scaling ∣D∣ 
cannot resolve without addressing representativeness). A more dedicated critque is provided in a later section. 
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For example, a skeptical engineer might construct worst-case perturbations δ\deltaδ that maximize 188 

the loss: 189 

𝑚𝑎𝑥∥𝛿∥≤𝜀 𝐿 (𝑓𝜃 , (𝑥 + 𝛿))          (3) 190 

forcing the model to prove its robustness under stress conditions and not fail catastrophically under 191 

distribution shifts, adversarial attacks, or other high-risk settings. 192 

It must be noted that in ML contexts, skepticism manifests as a caution against overfitting, subtle 193 

biases, and misplaced optimism [33]. For example, even high accuracy metrics cannot fully ensure 194 

that a blackbox model will behave consistently across untested or extreme conditions [34]. Here, 195 

a skeptical engineer must insist on strong validation protocols, independent audits, and explicit 196 

accountability structures to detect and mitigate unforeseen consequences. The advantage of 197 

skepticism is that it minimizes the chance of blindly deploying unverified ML models. In contrast, 198 

skepticism can slow innovation if rigid protocols are applied prematurely, as they may discourage 199 

the adoption of novel methods (or, possibly, improve them via targeted improvements). Balancing 200 

these two extremes of caution and openness to experimentation is a persistent challenge that 201 

skepticism alone cannot resolve [35]. More specifically, a skeptical orientation might include 202 

carefully curated validation sets that detect performance degradation or unexpected behaviors or 203 

systematically question model outputs [36]. 204 

Intuition is frequently described as the subconscious synthesis of prior experience that enables us 205 

to rapidly judge novel or ambiguous situations. Intuition builds on the notion that experiential 206 

wisdom is gained through repeated exposure to dilemmas. Hence, a skilled engineer acquires a 207 

tacit sense for identifying when a parameter setting, threshold value, or system architecture is 208 

likely to fail, even if no formal proof or dataset can capture that insight. For instance, if domain 209 

experts have an insight that "parameter α must not exceed αmax because of known physical 210 

limitations," they might incorporate the following constraint to the optimization problem. 211 

θ ∈  {θ ∣ α(θ) ≤ α𝑚𝑎𝑥}          (4) 212 

This ensures that model solutions do not violate well-established engineering principles or domain 213 

knowledge, even if the empirical loss 𝐿(𝑓𝜃, 𝐷) might appear lower for unconstrained values of α. 214 

Intuitive heuristics thus function as additional regularizers or safety checks based on context-215 

specific rules not fully captured by the dataset. More informally, intuition can be viewed as a form 216 

of prior distribution p(θ) in a Bayesian framework, where strong gut feelings correspond to a 217 

narrow prior that restricts certain regions of θ-space as implausible regardless of the signal from 218 

the data.  219 

One might say intuition operates through pattern recognition shaped by accumulated practice, 220 

letting engineers integrate subtle contexts that purely data-driven analyses may overlook [37]. This 221 

standpoint counters the notion that all relevant knowledge can be extracted from datasets and 222 

emphasizes situations where reliance on a model contradicts time-tested insights. With respect to 223 

opaque ML models, intuition can serve as an informal sanity check that prompts further 224 

investigation when a model's prediction seems dubious despite strong statistical performance. 225 

Critics of intuition note that it can propagate biases or be swayed by personal experience, which 226 
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may not generalize. However, ignoring professional intuition can lead to missed red flags in a fast-227 

moving or unpredictable environment [38].  228 

Meanwhile, the role of intuition in engineering continues to gain attention as complex design 229 

challenges increasingly require quantitative and experiential insights. Therefore, engineering 230 

heuristics often derive from decades of accumulated practice, capturing context-dependent 231 

knowledge that is not easily codified into computational pipelines [39]. Although ML algorithms 232 

excel at detecting patterns, they can overlook subtle constraints or emergent properties best 233 

recognized by domain experts. However, intuition alone is susceptible to personal biases, and its 234 

reliance on individual expertise raises questions about reproducibility and standardization [40]. 235 

A deeper exploration of these standpoints reveals their overlapping assumptions about truth and 236 

reliability. Where dataism assumes that reality can be captured comprehensively through data, 237 

skepticism questions whether any dataset, however large, can fully represent the variability of real-238 

world scenarios. On the other hand, intuition focuses on the assumption that localized knowledge 239 

can be gleaned from hands-on practice. These assumptions lead to distinct model evaluation and 240 

approval approaches. For example, a dataist might prefer extensive cross-validation protocols, 241 

hyperparameter tuning, and performance benchmarks to confirm a model's worth [41]. Skeptics 242 

might propose an independent challenge to the model's results with adversarial tests that push its 243 

boundaries [42]. Engineers guided by intuition might incorporate domain heuristics, manually 244 

check corner cases, or place confidence in simpler architectures that align more closely with known 245 

design rules [43]. 246 

Given the above, conflicts arise when dataism-driven enthusiasm for bigger models clashes with 247 

skepticism's demand for step-by-step proof of viability. Another source of tension emerges when 248 

intuitive judgments override or undervalue the empirical evidence collected from real-world data 249 

[44]. This creates friction when deciding whether to trust automated predictions. Dataism, if 250 

followed uncritically, might overlook harmful biases embedded in large but skewed datasets [45]. 251 

While useful for spotting such issues, skepticism may focus so heavily on testing and verification 252 

that it stalls creative solutions that could benefit society [46]. Similarly, intuition can offset blind 253 

reliance on data, yet it can embed unconscious prejudices if not subject to reflection – see Fig. 1. 254 
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 255 
Fig. 1 Connection between the different standpoints256 

Another practical implication concerns iterative model updates. Dataist thinking fosters frequent 257 

retraining on newly collected data, but engineers guided by skepticism will call for stress testing 258 

of the revised model before it is redeployed [47]. Intuitive inputs can expedite or refine this process 259 

by flagging suspicious changes that might go unnoticed. An added layer of difficulty arises when 260 

blackbox architectures yield strong predictive performance but resist easy explanation. Dataists 261 

might see no immediate issue if performance is high, while skeptics continue to demand 262 

interpretable outputs to validate correctness under corner cases [48]. Engineers leaning on intuition 263 

are likely to caution that sudden prediction changes signal deeper problems. These tensions show 264 

why ignoring one standpoint will likely lead to systemic blind spots.  265 

In response, dataists might be compelled to create more interpretable intermediate layers or log 266 

post-hoc methods. Skeptics might design structured protocols for verifying interpretability, as 267 

inspired by recognized standards or guidelines, to confirm the suitability of any explanatory 268 

method. Meanwhile, engineers emphasizing intuitive wisdom might champion features that 269 

present model outputs in ways that align with real-world decision flows.  270 

4.0 The dataism, skepticism, and intuition (DSI) framework 271 

The standpoints of dataism, skepticism, and intuition (DSI) can be harmonized into a cohesive 272 

framework that sheds light on the inner workings of blackbox models from an engineering 273 

perspective. This framework integrates qualitative and quantitative methods and is presented 274 
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herein (see Fig. 2). At its core, the DSI framework operates through three interconnected lenses: 275 

Dataism (D) drives empirical validation by prioritizing measurable evidence from datasets and 276 

performance metrics, Skepticism (S) challenges assumptions by questioning data quality, model 277 

choices, and explanation stability, while Intuition (I) leverages domain expertise and human 278 

judgment to guide feature engineering, interpret anomalous results, and design context-appropriate 279 

explanations. Operationally, these components interact iteratively—dataism provides the 280 

quantitative foundation upon which skepticism interrogates validity and representativeness, while 281 

intuition bridges gaps where data is sparse or explanations seem implausible. This triadic 282 

relationship ensures that blackbox model explanations are neither purely algorithmic nor purely 283 

subjective, but rather emerge from a structured dialogue between empirical evidence, critical 284 

examination, and experiential knowledge. This section also presents a practical demonstration of 285 

DSI to showcase its potential use in engineering scenarios. 286 
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 287 
Fig. 2 The proposed DSI framework 288 
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4.1 Description of the proposed framework  289 

The proposed framework begins by establishing clear engineering goals and boundaries, as 290 

engineers often work under constraints (i.e., limited computational resources, etc.) and 291 

expectations from business stakeholders. Because of these realities, the overarching motivation for 292 

any technical decision involves balancing performance with interpretability considerations. Thus: 293 

• The first principle of such a framework is acknowledging that data, while foundational, is 294 

not infallible. More specifically, even large datasets can be unrepresentative or contain 295 

biases that distort downstream decisions. By giving voice to dataism, the proposed 296 

framework emphasizes the primacy of empirical evidence, but we temper it by 297 

acknowledging that data must always be subject to scrutiny. 298 

• The second principle is the cultivation of skepticism within the engineering practice. This 299 

means that engineers actively examine data distributions to identify potential noise and bias 300 

sources and confirm whether the dataset aligns with the intended real-world application. 301 

Skepticism also applies to the choice of algorithms, as no single ML method is universally 302 

superior [49]. Hence, a skeptical stance insists on the evidence-based selection of 303 

algorithms, guided by performance metrics but grounded in understanding the data's 304 

nature, the cost of mispredictions, and the feasibility of explaining outputs to end users. 305 

• The third principle elevates intuition and recognizes that human creativity, domain 306 

expertise, and experiential knowledge can refine the process of explaining models. In the 307 

context of blackbox explanations, intuition can inspire the creation of novel interpretability 308 

techniques or the use of domain-specific visualizations that resonate better with engineers 309 

or stakeholders. Intuition also influences the sampling of training data or the engineering 310 

of features that might not be strictly derived from existing data attributes but from a 311 

nuanced understanding of the problem space. 312 

Bringing these three principles together can lead to the proposed DSI framework. The first step is 313 

establishing the problem context to clarify the purpose of the ML model, identify expected 314 

outcomes, and delineate success metrics. For instance, an engineer developing a predictive system 315 

must determine whether a false positive (i.e., flagging a machine as likely to fail when it is not) is 316 

costlier than a false negative (missing a real failure). Likewise, an engineer designing an 317 

autonomous system must determine if the model's interpretability in real-time is vital or if real-318 

time accuracy under certain constraints is more critical. During this problem formulation, dataism 319 

is entered by demanding relevant datasets that capture typical and edge-case scenarios. Skepticism 320 

is applied by verifying that these datasets accurately represent the real-world complexities or edge 321 

conditions. Intuition emerges when engineers rely on their knowledge about the operational 322 

environment (e.g., how certain machinery behaves in extreme temperatures) to refine the data 323 

collection strategy and ensure completeness. At this stage, intuitive insights can be systematically 324 

captured through structured knowledge forms that document operational constraints not evident in 325 

data, anticipated failure modes based on engineering principles, and environmental factors derived 326 

from field experience. Each intuitive contribution can then undergo peer validation through expert 327 

panels to assess the physical plausibility and consistency with established engineering principles. 328 

The second step is model selection and initial development. A purely dataistic approach would 329 

favor whichever model yields the best performance as validated by standard performance metrics. 330 

However, skepticism raises the question of why a certain model might perform better. Could it be 331 
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overfitting? Is the dataset overly simplistic, enabling simpler models to do just as well without the 332 

heavy computational overhead of deep neural networks? Is there a possibility that the data 333 

distribution shifts over time, requiring a model with certain adaptability characteristics? This line 334 

of questioning ensures that model choice is not just about chasing the best numerical score. 335 

Intuition supplements the process by leveraging domain expertise to suggest algorithmic 336 

heuristics, interpretability constraints, or specialized architectures. One possible means to codify 337 

these intuitive architectural decisions is to implement a justification matrix that maps each design 338 

choice to: 1) explicit domain constraints, 2) analogous successful implementations in similar 339 

domains, 3) theoretical guarantees or empirical evidence supporting the intuition, and 4) 340 

quantifiable validation criteria. With time, such a matrix may undergo iterative refinement through 341 

structured deliberation sessions where intuitive proposals are subjected to adversarial questioning 342 

to expose potential biases. For instance, an engineer experienced in industrial processes might 343 

incorporate certain rules derived from physical laws into a hybrid model, thereby complementing 344 

the purely data-driven approach with domain insights. 345 

Once a preliminary model is selected and trained, the third step involves interpretability analysis. 346 

The blackbox nature of many modern ML algorithms often makes extracting clear explanations 347 

for their outputs difficult. In the proposed framework, dataism provides the impetus to use model-348 

agnostic tools and methods to generate local explanations or feature importance graphs. However, 349 

skepticism once again questions the stability and generalizability of these explanations. Are the 350 

visualizations produced by these methods consistent across different samples? Could they be 351 

artifacts of spurious correlations? Intuition becomes critical at this stage of interpretability because 352 

an engineer's expertise can guide how to interpret or even challenge the explanation provided by 353 

these tools.  354 

One could establish a structured contradiction detection protocol to leverage intuition during 355 

interpretability analysis, where engineers document instances where model explanations violate 356 

domain knowledge, categorize these violations (physical impossibility, logical inconsistency, or 357 

contextual implausibility), and propose testable alternative hypotheses. Then, each documented 358 

contradiction undergoes empirical validation through targeted experiments designed to distinguish 359 

between model artifacts and genuine patterns. Suppose an interpretability method claims that a 360 

specific set of input features is most responsible for a prediction. In that case, domain knowledge 361 

might reveal that such a conclusion is physically or logically impossible. This can prompt further 362 

investigations—perhaps the interpretability method is being misapplied, or the model has picked 363 

up a data leak. Intuition also assists in designing custom interpretability techniques. For instance, 364 

if an engineer suspects that temporal ordering is crucial, they might develop a way to visualize 365 

how the model's hidden states evolve, correlating that progression with known physical 366 

phenomena. 367 

After interpreting the model's decision-making to the extent possible, the next step is iterative 368 

refinement. Under dataism, additional data collection might be warranted if certain failure modes 369 

or corner cases are only partially captured in the existing training sets. Skepticism encourages 370 

rechecking model assumptions at each iteration to verify that performance metric improvements 371 

translate to reliable real-world performance. Perhaps one iteration reveals that the model is highly 372 

sensitive to noise in a certain sensor. With a skeptical mindset, the engineer would measure that 373 

noise distribution carefully, possibly resulting in data augmentation strategies or sensor fusion 374 
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techniques that mitigate the problem. Intuition supports these iterative loops by helping engineers 375 

anticipate which modifications are most likely to bring tangible improvements, drawing on a 376 

combination of domain knowledge, practical experience, and subtle patterns recognized in error 377 

analysis. 378 

Given the above, a structured means of documenting, explaining, and justifying each choice 379 

becomes important. Therefore, and for every iteration, engineers record how data was collected 380 

and preprocessed, why particular algorithms were chosen, how interpretability methods were used, 381 

and what human insights guided the fine-tuning of the model. This structure formalizes the 382 

presence of DSI in a reproducible manner, prevents knowledge loss when project handovers occur, 383 

and offers a blueprint for future audits or accountability queries. Further, this means can 384 

specifically address the question of how to best explain blackbox models. Engineers might engage 385 

in expert-to-expert explanations, where methods of model interpretability are discussed in the 386 

language of mathematics and software implementation details. However, business or regulatory 387 

stakeholders often require simpler narratives. Thus, balancing DSI ensures that both technical and 388 

non-technical audiences grasp the significance of the model's decisions and any associated risks 389 

or uncertainties. 390 

Another facet of the blackbox explanation involves the challenge of trust calibration. Users and 391 

decision-makers may either over-trust or under-trust ML models. Over-trust occurs when they 392 

assume the model is always correct (or too robust to fail in unpredictable ways). Under-trust occurs 393 

when they dismiss the model's value because they cannot see how it arrives at its conclusions. 394 

Fortunately, the DSI framework counters both extremes, wherein dataism presents empirical 395 

evidence that the model works well within a certain domain, as validated by objective metrics and 396 

real-world tests. Skepticism highlights the limitations and boundary conditions that come from a 397 

deep understanding of how the model processes data, while intuition places these numerical 398 

evaluations in a context that resonates with a human sense of plausibility.  399 

Human factors also play a role in establishing a workable level of model explanation. For instance, 400 

not all engineers or stakeholders respond well to purely visual explanations or purely textual 401 

documentation. From this lens, dataism supports observation by suggesting that real or synthetic 402 

data can be fed to see how the model reacts, and skepticism insists on safeguarding the experiment 403 

from contrived scenarios that do not match reality. Intuition guides the design of these interfaces 404 

to be user-friendly and aligned with the conceptual frameworks that non-expert stakeholders bring 405 

to the table.  406 

The above infers that the end result of the proposed framework is not a rigid set of instructions but 407 

a dynamic process that evolves alongside the ML lifecycle. Dataism reminds engineers that 408 

continual data validation is essential, especially in a changing environment where new data might 409 

shift the underlying distributions or open up new challenges. Skepticism ensures that the 410 

engineering team becomes complacent at no point – i.e., even a model that has proven successful 411 

in production for years might encounter new contexts or adversarial scenarios that prompt re-412 

evaluation. Intuition remains a steady influence on grounding the entire endeavor in the realities 413 

of the application domain. Implementing this framework requires an organizational culture that 414 

values data-driven decision-making and human-centered skepticism and intuition. Thus, training 415 

programs might be designed to emphasize the ethical and interpretive dimensions of ML. This 416 
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way, cross-functional teams that blend data scientists, engineers, domain experts, and user-417 

experience designers are more likely to maintain the continuous interplay between DSI. 418 

Table 2 captures the sequential phases of the DSI framework along with the critical questions and 419 

decision points that drive technical rigor and domain alignment. In addition, this table also lists a 420 

number of strategies aimed at capturing, documenting, and validating each axis of DSI.421 
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Table 2 Summary of the key questions and decisions from the discussion and methods for capturing, documenting, and validating engineers' tacit insights in the DSI framework 422 

Phase Key Questions / Decisions 

Problem Context 
Establishment 

- What engineering goals, constraints, and success metrics define the project? 
- How are misprediction costs quantified? For instance, if minimizing false negatives is prioritized, how is this encoded into the model's optimization objective? 
- Does the dataset sufficiently represent real-world variability, including edge cases? 
- How does domain expertise inform data collection strategies, such as incorporating environmental factors (e.g., extreme temperature effects on machinery)? 

Model Selection 
and Development 

- Which performance metrics are prioritized, and how do they align with operational requirements? 
- Does the chosen algorithm balance interpretability and computational efficiency? 
- Is there evidence of overfitting, such as a significant discrepancy between training error and validation error? 
- How might domain-specific heuristics be integrated into the model architecture? 

Interpretability 
Analysis 

- Which model-agnostic tools (e.g., SHAP, LIME) are used to generate explanations, and how are their outputs validated for consistency across samples? 
- Do the identified feature importances align with domain knowledge, or do they suggest spurious correlations? 
- If a feature appears critical but lacks physical plausibility, what steps are taken to investigate potential data leakage or measurement artifacts? 
- Are temporal or spatial dependencies in the model's behavior visualized in a manner consistent with domain-specific phenomena? 

Iterative 
Refinement 

- How does new data collection address gaps identified in previous iterations, such as underrepresented failure modes? 
- Are performance improvements (e.g., reduction in loss L) accompanied by real-world reliability gains? 
- For instance, if sensor noise sensitivity is detected, is the noise distribution characterized to guide augmentation or sensor fusion strategies? 
- How does domain expertise help prioritize model modifications (e.g., the addition of regularization terms like λ‖θ‖²) that are likely to yield meaningful improvements? 

Documentation 
and Trust 
Calibration 

- How are technical decisions and human insights recorded to ensure reproducibility? 
- Are explanations tailored for both technical stakeholders and non-technical audiences? 
- What empirical evidence and boundary conditions are communicated to calibrate trust? 

Dynamic Process 
and Culture 

- How does the framework adapt to shifting data distributions or adversarial scenarios? 
- What safeguards are in place to prevent complacency in long-deployed models? 
- How does organizational culture foster collaboration between data engineers, domain experts, and ethicists to sustain the DSI equilibrium? 

Principle Capture Methods Documentation Approaches Validation Techniques Bias Mitigation Strategies 

Dataism • Automated data lineage tracking  
• Feature importance logging • Data quality profiling 
sessions  
• Anomaly detection protocols  
• Statistical distribution monitoring  
• Data annotation sessions with domain experts 

• Data dictionaries with provenance metadata  
• Versioned feature engineering notebooks  
• Standardized data quality reports  
• Assumption matrices linking data characteristics to model 
requirements • Temporal validity documentation  
• Edge case catalogs 

• Cross-validation  
• Statistical hypothesis testing for distribution shifts  
• Synthetic data generation for boundary testing  
• Multi-source data triangulation  
• Replication studies across datasets 
• Adversarial data validation 

• Stratified sampling protocols  
• Simpson's paradox detection  
• Confounding variable analysis  
• Data augmentation to balance representations  
• Blinded data collection procedures  

Skepticism • Structured adversarial reviews  
• Failure mode and effects analysis (FMEA)  
• Root cause analysis sessions  
• Model stress testing workshops  
• Assumption challenging protocols  
• Counterfactual reasoning exercises 

• Assumption registers with criticality ratings • Model limitation 
catalogs  
• Failure case repositories  
• Uncertainty quantification logs  
• Decision boundary documentation   

• Ablation studies  
• Sensitivity analysis • Out-of-distribution testing  
• Metamorphic testing  
• Formal verification where applicable  
• Red team exercises 

• Mandatory contrarian perspectives  
• Rotation of skeptic roles  
• External auditor involvement  
• Premortem analysis • Cognitive bias checklists 
• Anonymous challenge mechanisms 

Intuition • Think-aloud protocols  
• Critical incident technique  
• Concept mapping sessions  
• Analogical reasoning elicitation • Tacit knowledge 
externalization workshops 

• Structured intuition templates  
• Pattern recognition databases  
• Heuristic rule repositories  
• Mental model diagrams  
• Experience-based decision trees  
• Contextual trigger documentation   

• Expert panel consensus methods • Empirical testing of 
intuitive hypotheses  
• Historical case validation  
• Simulation-based verification  
• Cross-domain expert review   

• Blind spot analysis  
• Diverse expert panels  
• Structured deliberation protocols  
• Intuition source attribution  
• Cognitive debiasing training  
• Systematic doubt introduction  

423 
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 424 

4.2 Practical demonstration 425 

The reader may consider the implementation of the proposed framework in a ML-based structural 426 

health monitoring system for aging highway bridges, where the objective is to predict the failure 427 

mode of various bridges. For the sake of this discussion, let us presume that an engineering team 428 

is building a highly accurate ML model (see our earlier work for details on a similar ML model 429 

[50]).  430 

The dataism component drives the initial ML model development and validation by systematically 431 

collecting multi-modal sensor data (e.g., strain gauge measurements and environmental 432 

parameters, including temperature gradients and humidity fluctuations that affect material 433 

properties, etc.). This data is collected and aggregated alongside five years of historical inspection 434 

records to create feature vectors that capture both instantaneous structural responses and long-term 435 

degradation patterns.  436 

The skepticism component is set to challenge the representativeness of this dataset by questioning 437 

whether sensor placements adequately capture critical stress concentrations, or whether the 5-year 438 

historical window sufficiently encompasses extreme loading events (e.g., overweight vehicles, 439 

seismic activity, etc.), and whether data from newer concrete bridges can reliably inform 440 

predictions for older steel truss bridges. This skeptical examination also reveals that certain failure 441 

modes (particularly those involving hidden corrosion in expansion joints or fatigue cracks 442 

initiating from construction defects) remain underrepresented in the training data. This is likely to 443 

promote targeted instrumentation campaigns and the incorporation of simulated data to be 444 

generated through finite element simulations of progressive damage scenarios. 445 

Then, the intuition component fundamentally reshapes the model architecture and interpretation 446 

strategy by leveraging tacit knowledge of structural engineering regarding load path redistribution 447 

and damage accumulation mechanisms. Practically, rather than treating a bridge as a monolithic 448 

entity, domain knowledge suggests decomposing the structure into critical components (deck, 449 

girders, bearings, piers) with distinct deterioration models. Thus, when the ML model is fully 450 

developed, and its explanations indicate that temperature differential dominates failure predictions 451 

(which seemingly overshadow traffic load factors), engineering intuition recognizes this as 452 

potentially capturing the indirect effect of thermal cycling rather than direct structural failure. 453 

Furthermore, intuition guides the trust calibration process by establishing physically meaningful 454 

bounds on predictions; for instance, when the model suggests a 50-year remaining life for a bridge 455 

component already exhibiting visible cracking, domain expertise overrides the algorithmic output 456 

by triggering a detailed investigation that ultimately reveals sensor drift in the strain 457 

measurements. This iterative interplay ensures that the final deployed system not only achieves 458 

high predictive accuracy but also generates explanations that align with established principles of 459 

structural mechanics, thereby fostering acceptance among bridge engineers who must ultimately 460 

act upon the model's maintenance recommendations. To further illustrate the comprehensive 461 

nature of the DSI framework, one can examine its application across critical stages of the ML 462 

lifecycle, as well as to scrutinize model explanations, in this bridge monitoring context (see Table 463 

3). 464 

Table 3 DSI applications across ML stages 465 
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ML Stage Dataism (D) Skepticism (S) Intuition (I) 

Model 
Development 

Track data and quality 
metrics: sensor uptime 
rates, missing data 
patterns across bridges, 
signal-to-noise ratios for 
different sensor types 

Question selection bias: are 
monitored bridges 
representative of the entire 
infrastructure portfolio, or 
biased toward high-traffic/high-
value structures? Examine 
survivorship bias in historical 
records 

Identify bridges to exclude 
from training (e.g., those 
undergoing active 
rehabilitation), and recognize 
seasonal patterns in sensor 
reliability that inform data 
collection windows 

Model Training Evaluate multiple loss 
functions (e.g., MSE for 
continuous degradation, 
etc.), implement stratified 
k-fold validation respecting 
geographical clusters 

Challenge train/test split 
strategies: does random 
splitting leak information 
through bridges in same 
environmental conditions? 
Question if performance on 
historical data guarantees 
future reliability 

Select algorithm complexity 
based on deployment 
constraints (edge computing 
on bridge vs. cloud), balance 
between interpretability 
requirements and prediction 
accuracy 

Model 
Deployment & 
Monitoring 

Establish continuous 
monitoring: track 
prediction confidence 
distributions, measure 
inference latency, monitor 
feature drift indicators, log 
explanation consistency 
metrics 

Interrogate performance 
degradation: are prediction 
errors increasing 
systematically? Do explanations 
remain stable as new data 
arrives? Is the model becoming 
overconfident? 

Determine retraining triggers 
based on engineering 
judgment (e.g., after major 
seismic events), set 
intervention thresholds that 
account for inspection team 
capacity and budget cycles 

Explanation 
Generation 

Compute multiple 
explanation methods 
(LIME, SHAP, etc.) and 
quantify their agreement, 
generate explanations at 
different granularities 
(component-level vs. 
system-level) 

Test explanation robustness: 
do slight input perturbations 
drastically change 
explanations? Are "important" 
features consistent across 
similar bridges? Do 
explanations violate 
conservation laws? 

Design custom explanation 
visualizations that mirror 
structural analysis diagrams, 
translate ML feature 
importance into engineering 
language (e.g., "influence 
lines" rather than "SHAP 
values") 

 466 

5.0 A philosophical critique of DSI 467 

The proposed DSI framework can be further discussed by comparing it with existing frameworks 468 

in the literature. This comparison also showcases possible treatments to overcome some arising 469 

concerns, from purely technical metrics to ethical, regulatory, and epistemological dimensions.  470 

5.1 Philosophical foundations of DSI: dataism, skepticism, and intuition 471 

First, the emphasis on dataism evokes parallels with logical positivists in which knowledge is 472 

perceived to be grounded primarily in verifiable empirical statements [51]. More specifically, 473 

without explicit guidelines for auditing the data generation process, the DSI framework risks 474 

perpetuating what Gitelman [52] terms raw dataism (i.e., the illusion that data exists independently 475 

of human mediation). To strengthen its positivist foundations, the DSI framework could require 476 

engineers to document not only dataset statistics but also their production's historical and 477 

institutional conditions. Indeed, dataism also parallels what Popper calls empirical falsifiability 478 
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(which emphasizes that the reliability of a model hinges on its alignment with observational data) 479 

[53].  480 

While dataism in the DSI framework stresses the importance of empirical evidence, Kuhn and 481 

Feyerabend remind us that data is not a neutral arbiter of theories [54]. Here, the DSI framework 482 

agrees with this reality by infusing skepticism to ensure that data is not accepted at face value. 483 

Nevertheless, the question remains whether engineers, who are often under practical time 484 

constraints, can afford to engage in the deeper critique of data or remain at the level of superficial 485 

checks. This implies that the proposed framework diverges from purely data-centric methods by 486 

stressing how data must also be examined via a skeptical lens (i.e., to be questioned, validated, and 487 

understood). While some prior frameworks include guidelines for bias detection or hold-out 488 

validation, they often treat such measures as checkboxes rather than as philosophical orientations 489 

to challenge assumptions. The DSI proposes skepticism as a continuous process throughout the 490 

lifecycle of a ML model rather than a sporadic or purely reactive measure. 491 

Third, the favoritism towards intuition as a central principle recalls Kant's [55] distinction between 492 

pure reason and intuitive judgment and Bergson's [56] view that certain truths elude purely 493 

analytical detection and require more direct, immediate insight. Within ML, intuition pertains to 494 

domain expertise or tacit knowledge [57]. This emphasis on intuitive judgment parallels rationalist 495 

traditions, especially the idea that reason or insight can yield knowledge not captured by empirical 496 

data alone. Descartes [58] famously noted the centrality of skepticism in the formation of certainty. 497 

Although we do not claim a Cartesian notion of innate knowledge, we leverage the fact that 498 

seasoned professionals in specialized domains often rely on years of practical experience to 499 

quickly detect irregularities or posit new hypotheses about data that automated systems might 500 

overlook. Thus, the DSI framework integrates empiricism and mild rationalism beyond a purely 501 

mechanistic approach to ML.  502 

It is worth noting that integrating intuition introduces subjectivity and raises concerns about 503 

codifying/validating tacit knowledge (since it might resist transparent documentation or objective 504 

scrutiny). In fact, one could argue that by giving engineers the freedom to rely on gut feelings, the 505 

framework risks introducing personal biases or anecdotal heuristics [59]. For example, Ihde 506 

[60,61] argued that subjective experiences can inform technological design yet remain difficult to 507 

standardize. However, a proponent of this framework would respond that these personal biases are 508 

already present in engineering projects and building codes. Making them explicit under the label 509 

of intuition does not aggravate the problem of subjectivity. Rather, it offers a structured means to 510 

harness domain expertise while demanding that such intuitions be tested against data and subjected 511 

to skeptical review to help reveal biases that would otherwise remain hidden – see Fig. 3. Thus, 512 

without strong processes for justifying intuitive decisions, the DSI framework risks lapsing into a 513 

scientism that tacitly endorses unexamined heuristics or assumptions.  514 

Philosophical insights have long argued that a well-rounded ethical stance must integrate multiple 515 

ways of knowing [62]. For example, when compared to risk- and compliance-centric frameworks, 516 

the DSI framework also has ethical implications in the domain of ML (vs. purely data-driven 517 

methods, which can miss subtle normative intuitions about fairness). Therefore, when DSI 518 

highlights intuition, this framework acknowledges that moral considerations and cultural 519 
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expectations may guide the generated explanations (e.g., civil engineers can leverage their training 520 

and intuition to interpret model results' significance to align with engineering ethics and standards). 521 
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 522 
Fig. 3 Companion illustration to the philosophical critique of DSI 523 
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5.2 Causality and ontological commitments in DSI 524 

This philosophical critique could also benefit from highlighting the role of causality in the 525 

proposed DSI, as a central issue in philosophy and ML alike is whether explanations should be 526 

merely correlational or if they must also uncover the causal structures.  527 

From the dataism perspective, the reliance on large observational data inherently obscures causal 528 

relationships by favoring correlational patterns. On the one hand, dataism often echoes the 529 

empiricist inclination to trust large bodies of observational evidence [63]. However, Salmon [64] 530 

and Cartwright [65] stressed that statistical relevance cannot exhaustively capture explanation 531 

alone. Cartwright, in particular, argued that causal laws lie in the sense that they involve idealized 532 

assumptions that are not directly observable in raw data [66]. Pearl [67] later provided a formal 533 

apparatus for such causal reasoning and noted how correlation-based models lack the power to 534 

definitively establish causal relationships without additional assumptions or interventions. Thus, 535 

dataism's fundamental orientation toward pattern recognition in observational data systematically 536 

masks causal mechanisms and risks the adoption of blackbox models that strongly predict 537 

outcomes yet remain systematically misleading if they encode non-causal correlations (e.g., 538 

through confounding variables, selection bias, or spurious correlations that dataism alone cannot 539 

distinguish from genuine causal pathways).  540 

In stark contrast, the skepticism dimension serves as the primary mechanism for causal scrutiny 541 

within the DSI framework. Skepticism advises engineers to question whether data distributions 542 

appropriately represent real-world conditions and to suspect hidden biases or confounders that 543 

might compromise the generalizability of the learned model. This skeptical stance directly 544 

operationalizes the methodological requirements of causal inference, as it demands that engineers 545 

interrogate whether observed correlations reflect genuine causal relationships or merely statistical 546 

artifacts. Moreover, the iterative refinement that DSI encourages can be formally understood as 547 

implementing a quasi-experimental methodology, where every iteration functions as an 548 

interventional probe designed to isolate causal pathways through systematic variation of model 549 

assumptions and data selection criteria. Skepticism thus transforms from a general epistemic virtue 550 

into a specific technical practice of causal hypothesis testing.  551 

The intuition component embodies tacit causal knowledge derived from domain expertise. This 552 

can serve as both a source of causal hypotheses and a constraint on plausible causal structures 553 

(particularly in engineering, where domain experts often rely on tacit knowledge to anticipate 554 

causal connections). Such domain expertise often translates into powerful heuristics or constraints 555 

on the plausible relationships. For example, an engineer might know that sensor A always lags 556 

sensor B due to a built-in mechanical delay (encoding the causal constraint that B→A is temporally 557 

impossible, thereby excluding an entire class of correlational models despite their potential 558 

predictive accuracy). Intuition thus functions as an implicit causal model that guides both data 559 

collection strategies and model architecture choices. Naturally, and as noted above, this component 560 

risks crystallizing incorrect causal assumptions into the ML pipeline without a disciplined 561 

methodology for testing intuition. Methodological approaches like Pearl's do-calculus [68] or 562 

Woodward's interventionist theory of causation [69] could be integrated into the DSI framework 563 

to provide formal mechanisms for translating intuitive causal knowledge into testable constraints, 564 

potentially through structured elicitation of causal graphs from domain experts or systematic 565 

validation of intuition-derived causal claims through targeted experiments. 566 
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The integration of causality across the DSI components reveals a fundamental tension: dataism 567 

generates predictive power through correlational patterns while potentially obscuring causal 568 

structure, skepticism demands causal rigor but may paralyze decision-making without clear 569 

interventional evidence, and intuition provides causal shortcuts that may either illuminate or 570 

mislead. This suggests that effective ML requires actively managing the causal implications of 571 

each component—using skepticism to interrogate dataism's correlational findings, leveraging 572 

intuition to propose causal hypotheses for skeptical evaluation, and employing dataism to test the 573 

empirical consequences of intuition-derived causal models. 574 

Philosophically, this causal integration of DSI components brings the notions realism and anti-575 

realism into sharp focus as competing orientations for the framework. Realists, such as Bunge 576 

[70], argue that causal relationships exist independently of our attempts to measure them and that 577 

scientific theories can, in principle, uncover genuine causal mechanisms. If the DSI framework 578 

inclines toward realist assumptions, then each component must be calibrated to progressively 579 

approximate true causal structures: dataism provides the raw material, skepticism filters spurious 580 

associations, and intuition guides the search space. By contrast, an anti-realist or instrumentalist 581 

might argue that pinpointing genuine causal structures is less crucial than developing models that 582 

efficiently predict outcomes within practical operational boundaries. Under this interpretation, the 583 

DSI components need not converge on causal truth but merely achieve pragmatic coherence—584 

dataism maximizes predictive accuracy, skepticism ensures robustness, and intuition maintains 585 

interpretability. The discussion covered in this section, along with other notions, is summarized in 586 

Table 4 for brevity. 587 

Table 4 Summary of the philosophical critique of DSI 588 

Main 
Themes 

Key Ideas 
Philosophical 
References 

Implications for DSI 

Comparison 
with Logical 
Positivism 

DSI aligns with logical positivism and 
falsifiability. 

Logical Positivism 
(Popper), theory-
ladenness (Kuhn, 
Feyerabend). 

DSI needs safeguards 
against data positivism 
biases. 

Critique of 
Dataism and 
Empiricism 

While dataism emphasizes empirical 
evidence, philosophers like Kuhn and 
Feyerabend argue that data is not an 
objective arbiter and can be influenced by 
biases. 

Kuhn's paradigm 
shifts, Feyerabend's 
critique of scientific 
objectivity. 

Skepticism should be an 
ongoing practice in ML 
engineering. 

Skepticism in 
DSI 

Skepticism in DSI questions data and 
interpretive methods, advocating for 
continuous scrutiny rather than one-time 
quality checks. 

Hume's skepticism, 
scientific rigor, 
induction problem. 

Demands institutional 
norms to ensure rigorous 
scrutiny. 

Role of 
Intuition 

DSI incorporates intuition and direct 
insight, making intuition a formal principle, 
though it faces challenges in validation 
and standardization. 

Kant's pure reason, 
Bergson's intuition, 
Polanyi's tacit 
knowledge. 

Need for structured 
validation of intuitive 
insights. 

Critique of 
Subjectivity 

Critics argue that emphasizing intuition 
introduces subjectivity, while DSI 
supporters believe making biases explicit 
enhances transparency. 

Subjectivity in 
epistemology, 
Cartesian skepticism. 

Intuition must be tested 
against empirical data. 
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Pragmatist 
Perspective 

Pragmatism views truth as practical and 
evolving. DSI aligns with this iterative 
refinement process, balancing empirical 
and domain expertise. 

Pragmatism (Peirce, 
James), iterative 
model refinement. 

Supports empirical model 
refinement over rigid 
frameworks. 

Causality in 
DSI 

DSI acknowledges the longstanding debate 
on whether ML models should rely on 
correlations or uncover deeper causal 
structures. 

Causal inference 
(Pearl, Cartwright, 
Salmon). 

Causal structures should 
be integrated cautiously. 

Distinction 
Between 
Explanation 
and 
Prediction 

Engineers require more than blackbox 
models for interventions; they need causal 
understanding to modify and optimize 
system components. 

Hempel's explanation 
vs. prediction, 
counterfactual 
reasoning. 

ML engineers should 
incorporate both 
correlation and causality. 

Realism vs. 
Anti-Realism 

DSI navigates between realist perspectives 
that argue for objective causality and anti-
realist views that prioritize operational 
efficiency over absolute causation. 

Bunge's realism vs. 
instrumentalism in 
scientific modeling. 

DSI should balance 
operational efficiency 
with deeper inquiry. 

Ethical 
Implications 

Ethical concerns in DSI integrate multiple 
knowledge systems, aligning with virtue 
ethics and moving beyond mere technical 
fairness metrics. 

Virtue ethics, 
integration of moral 
wisdom in ML. 

Ethical fairness should 
not be limited to 
compliance models. 

 589 

6.0 A technical critique of DSI 590 

The proposed DSI framework can be further critiqued from a technical lens. This critique is 591 

provided herein and summarized in Table 5. 592 

Existing frameworks for ML interpretability can be technically grouped loosely into three 593 

categories: technical post-hoc interpretability [71], integrated (or intrinsic) interpretability [72], 594 

and risk and compliance-centric frameworks [73]. In the first category, methods such as LIME 595 

and SHAP can be applied to provide post-hoc explanations for ML models by distributing 596 

contribution scores among features or approximating a simpler model around each prediction. 597 

However, these predominantly data-driven methods tend to emphasize local or global feature-598 

related information without necessarily provoking more profound skepticism about the nature of 599 

the data itself or the possible mismatch between data distributions and real-world phenomena. 600 

These methods may also suffer from instability under input perturbations and computational 601 

inefficiency for high-dimensional data [74]. In addition, these methods do not fully account for 602 

human intuition's role beyond numeric validations. In the DSI framework, dataism resonates with 603 

post-hoc interpretability tools and data-focused approaches.  604 

On the other hand, intrinsic interpretability frameworks focus on constructing inherently 605 

understandable models (e.g., rule-based systems, decision trees, etc.) [22]. This category raises the 606 

question of whether interpretability should be designed from the outset to increase the direct 607 

alignment between model logic and domain constraints. While such approaches have contributed 608 

substantially to the discussion of interpretability, they still fall short of explaining the multiple 609 

subtle layers of empirical, skeptical, and intuitive knowledge [75]. 610 
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The final category, risk and compliance-centric frameworks, concerns itself with guidelines that 611 

revolve around trust, ethics, and regulation. For instance, the European Union's "Ethics Guidelines 612 

for Trustworthy AI" lays out big idea principles such as transparency, accountability, and data 613 

governance to ensure that ML systems respect fundamental rights and values [76]. Similarly, 614 

corporate efforts like IBM's "AI FactSheets" [77], AI Now Institute [78], or DARPA's XAI 615 

program [79] propose standardized documentation that outlines a model's intended use, 616 

performance characteristics, and known limitations. Unlike the DSI framework, these regulatory 617 

and ethical frameworks emphasize ML developers' moral and legal responsibilities but often lack 618 

detailed prescriptions on how to systematically weave domain intuition or skepticism into each 619 

stage of the ML pipeline. Simply, dataism in the DSI framework reminds us that any 620 

interpretability tool has an empirical dimension: how effectively does it illuminate real-world 621 

decisions, and can it be corroborated by observational evidence? Perhaps a key element to mention 622 

here is the embedding skepticism, which can be extended to call for accountability to question the 623 

data and the model's assumptions. By embracing intuition, the proposed framework fosters a more 624 

human-centered perspective that can detect fairness issues since domain experts might notice 625 

suspicious correlations or disparate impacts. 626 

To operationalize DSI at organizational scale, we propose a structured decision-tree methodology 627 

that systematically integrates the three pillars throughout the ML development lifecycle. As 628 

illustrated in Fig. 4, the DSI framework implementation begins with a fundamental architectural 629 

decision: whether the model is inherently interpretable (e.g., decision trees, rule-based systems) or 630 

requires post-hoc explanations. For interpretable models, the framework leverages intuition by 631 

enhancing transparency through domain expert annotations and contextual explanations. On the 632 

other hand, for blackbox models, dataism principles guide the selection of post-hoc tools (LIME, 633 

SHAP) with emphasis on empirical validation of feature importance scores. The second decision 634 

point evaluates data quality and documentation, where well-documented datasets proceed directly 635 

to explanation evaluation, while problematic datasets trigger skepticism-driven interventions, 636 

including bias detection algorithms (e.g., demographic parity tests, equalized odds assessments) 637 

and data validation protocols. The third decision node assesses whether explanations provide 638 

meaningful stakeholder insights (i.e., successful explanations are integrated into documentation 639 

leveraging domain intuition, while inadequate explanations undergo skepticism-based refinement 640 

through expert validation loops). The final governance checkpoint ensures ethical compliance, 641 

where compliant models proceed to deployment with risk assessments, while non-compliant 642 

models undergo adjustments balancing dataism and intuition to meet regulatory standards. This 643 

tree architecture enables organizations to scale DSI adoption through standardized workflows, 644 

with measurable checkpoints including data quality scores (proportion of documented features), 645 

explanation relevance metrics (stakeholder comprehension rates), and compliance indicators 646 

(ethical guideline adherence percentages). 647 
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 648 
Fig. 4 A sample flowchart for a brief examination of DSI in models 649 

Furthermore, the framework taps into ongoing debates in the philosophy of technology and ethics. 650 

For example, Nissenbaum [80] has championed contextual integrity and the view that technology's 651 

ethical and interpretive demands vary widely according to domain and stakeholder values. While 652 

the DSI framework acknowledges real-world constraints, it leaves the question of how DSI 653 

prioritizes them. A technical resolution could involve multi-objective optimization to Pareto-654 

optimize accuracy, interpretability, and fairness. Specifically, an engineer can formalize this as a 655 

constrained optimization problem where the objective function 𝛺 =  𝛼₁ · 𝐴(𝜃)  +  𝛼₂ · 𝐼(𝜃)  +656 

 𝛼₃ · 𝐹(𝜃) combines accuracy A(θ), interpretability I(θ), and fairness F(θ) metrics, with learnable 657 

weights αᵢ that reflect stakeholder priorities. The interpretability metric I(θ) itself decomposes into 658 

three sub-components aligned with DSI principles: I(θ) = β₁·D(θ) + β₂·S(θ) + β₃·U(θ), where D(θ) 659 

measures data transparency (e.g., feature attribution stability across perturbations), S(θ) quantifies 660 
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skepticism-driven robustness (e.g., worst-case performance under adversarial data shifts), and 661 

U(θ) captures intuition alignment (e.g., agreement rate with expert judgments on edge cases). The 662 

optimization proceeds through alternating minimization, where model parameters θ are updated to 663 

improve the composite objective while constraint slack variables ensure minimum acceptable 664 

thresholds for each component. In lieu of the above, skepticism-driven ablation studies could then 665 

quantify the performance cost of interpretability choices. Should interpretability be non-negotiable 666 

in high-stakes settings, or can it be traded off for performance gains if the dataset is robust? A 667 

thorough critique would demand a normative principle guiding these trade-offs rather than leaving 668 

them to ad hoc or organizationally driven decisions.  669 

Moreover, the notion of explanation in blackbox models intersects with the interpretivist critiques 670 

that argue for contextualized forms of understanding [81]. The DSI framework allows for the 671 

disclosure of partial insights into the model's workings. Yet critics might argue that these represent 672 

instrumental explanations rather than interpretive ones. To address this, DSI could integrate 673 

concept-based explanations, where high-level concepts (e.g., "texture" in medical imaging) are 674 

identified via concept activation vectors and validated by domain experts [82]. For instance, if the 675 

underlying model remains opaque, the real question might be whether stakeholders can 676 

meaningfully contest or revise the model's decisions or will be content with the illusions of 677 

transparency2 [83]. Without a philosophical stance on what counts as an explanation, the proposed 678 

framework might end up endorsing superficial interpretability solutions that fail to yield genuine 679 

epistemic or ethical accountability. For the sake of brevity, this is not DSI's intention. A technical 680 

safeguard could involve adopting explanation minimality criteria to ensure explanations are both 681 

sufficient and necessary. 682 

In addition, the reference to "trust calibration" echoes the concerns raised by O'Neill [84] 683 

regarding the distinction between genuine trust and mere reliance. O'Neill suggests that 684 

transparency alone does not guarantee trust; it may even breed suspicion if it is perceived as 685 

strategic or superficial. With its triple focus, the DSI framework aims to position itself as a middle 686 

ground. However, it provides limited guidance on operationalizing genuine trustworthiness in 687 

sociotechnical systems. For instance, if users are presented with partial model explanations, do 688 

they possess sufficient epistemic authority to question or override decisions? The dynamic 689 

interplay of data, skepticism, and intuition might yield a more grounded sense of trust within an 690 

engineering team. However, it may not automatically extend to end users, regulators, or impacted 691 

communities. A sample illustration of using the DSI framework is shown in Fig. 5. 692 

Table 5 Summary of the technical critique of DSI 693 

Main Themes Key Ideas Points of view Implications for DSI 

Categories of 
ML 

ML interpretability falls into three 
categories: technical post-hoc, intrinsic 
(built-in), and risk/compliance-focused. 

Classification of 
interpretability 
frameworks. 

DSI offers a unified 
approach combining 

 
2 The illusion of transparency occurs when explanations of complex AI models lead users to believe they understand 
how these models work, when in reality they don't. It's like being shown a simplified map and thinking you know 
every detail of the terrain. Even though users might get simplified visualizations or explanations of the model's 
behavior, these often hide the true complexity of how the model actually makes its decisions. This creates a 
dangerous situation where people feel confident they understand the system when their understanding is actually 
quite superficial. 
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Interpretability 
Frameworks 

empirical, skeptical, and 
intuitive perspectives. 

Post-hoc 
Interpretability 

Popular methods like LIME and SHAP 
approximate simpler models for complex 
predictions but focus primarily on feature 
importance rather than deeper skepticism. 

Post-hoc 
interpretability 
(LIME, SHAP), local 
vs. global 
explanations. 

Post-hoc tools remain 
useful but should 
integrate deeper critiques 
of data validity. 

Intrinsic 
Interpretability 

Frameworks like decision trees and rule-
based models allow interpretability from 
the outset but do not fully capture 
nuanced empirical and skeptical insights. 

Intrinsic 
interpretability 
(rule-based AI, 
decision trees, 
symbolic AI). 

DSI should address 
limitations in rule-based 
interpretability by layering 
domain insights. 

Risk and 
Compliance-
Centric 
Frameworks 

Regulatory frameworks (e.g., EU AI Ethics 
Guidelines, IBM AI FactSheets) emphasize 
transparency and accountability but lack 
integration of domain intuition. 

Ethical AI guidelines 
(EU AI Act, IBM 
FactSheets, 
corporate 
responsibility). 

Regulatory compliance 
should extend beyond 
documentation to include 
epistemic skepticism. 

Comparison 
with AI Meta-
Frameworks 

Organizations like AI Now Institute and 
DARPA XAI emphasize fairness and 
explainability, aligning with DSI's goals but 
lacking its operational focus. 

Fairness and 
explainability (AI 
Now, DARPA XAI, 
accountability 
mechanisms). 

DSI operationalizes 
fairness but must 
articulate how it translates 
into engineering decisions. 

Skepticism and 
Accountability 
in DSI 

DSI introduces a structured skepticism 
component, forcing engineers to question 
assumptions in data and models rather 
than relying solely on standard validation 
checks. 

Skepticism in 
epistemology, 
Popper's 
falsifiability, 
methodological 
rigor. 

Institutional norms must 
reinforce structured 
skepticism rather than 
treating it as an 
afterthought. 

Human-
Centered 
Intuition in DSI 

By incorporating intuition, DSI allows 
domain experts to detect fairness concerns 
and unusual correlations that automated 
methods might miss. 

Tacit knowledge 
(Polanyi), intuition 
in scientific 
reasoning 
(Bergson). 

Human expertise remains 
crucial for fairness 
evaluations but must be 
rigorously validated. 

Performance 
vs. 
Interpretability 
Trade-offs 

DSI acknowledges trade-offs between 
performance and interpretability but lacks 
a clear normative principle for 
prioritization in high-stakes settings. 

Ethical dilemmas in 
AI, Nissenbaum's 
contextual integrity. 

A normative framework is 
needed to guide 
performance vs. 
interpretability decisions. 

Philosophical 
Critiques of 
Explanation 

Gadamer's interpretivist critique highlights 
that black-box explanations might create 
an illusion of transparency rather than true 
epistemic accountability. 

Interpretivism in 
philosophy 
(Gadamer), 
critiques of 
superficial 
transparency. 

ML explanations should go 
beyond feature 
importance scores to 
include stakeholder 
contestability. 

Trust 
Calibration 
and Genuine 
Trust 

Onora O'Neill distinguishes between trust 
and mere reliance, suggesting that DSI 
needs clearer mechanisms for establishing 
trustworthiness in ML models. 

O'Neill's theory of 
trust, transparency 
vs. epistemic 
authority. 

DSI must distinguish 
between genuine trust-
building and shallow 
transparency strategies. 

 694 
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7.0 Conclusions 695 

The challenge of opacity in ML models, particularly in engineering contexts, necessitates a 696 

comprehensive approach that balances data-driven insights with human judgment. The dataism, 697 

skepticism, and intuition (DSI) framework offers a structured methodology for achieving this 698 

balance, integrating three philosophical standpoints to enhance model interpretability and 699 

accountability. By acknowledging the primacy of empirical evidence (dataism), while subjecting 700 

it to rigorous scrutiny (skepticism) and incorporating experiential wisdom (intuition), the DSI 701 

framework provides a means of navigating the complexities of blackbox models. More 702 

specifically, this framework emphasizes that foundational data is not infallible and must be 703 

actively examined for biases and noise. Further, skepticism ensures that model selection is 704 

evidence-based, grounded in understanding the data's nature and the feasibility of explaining 705 

outputs to end-users. Intuition leverages human creativity, domain expertise, and experiential 706 

knowledge to refine model explanations.  707 

The DSI framework also addresses the challenge of trust calibration, countering both over-trust 708 

and under-trust in ML models. Furthermore, it promotes a culture of continuous validation, 709 

ensuring that models remain reliable in changing environments and are subject to ongoing 710 

evaluation. The following also arises from the findings of this work: 711 

• The DSI framework integrates dataism, skepticism, and intuition to enhance ML model 712 

interpretability and accountability. 713 

• Skepticism and intuition address limitations of dataism, which emphasizes empirical 714 

evidence but may overlook biases and contextual nuances. 715 

• DSI facilitates trust calibration by balancing empirical evidence with understanding model 716 

limitations and human contextual knowledge. 717 

• The DSI framework hopes to structure the documentation, explanation, and justification of 718 

choices made throughout the ML lifecycle. 719 

• Future work will focus on developing a ML package/software framework that 720 

operationalizes DSI principles to enable quantitative assessment of its benefits, and 721 

comparative analysis against existing explainability methods, through controlled 722 

experiments across multiple engineering domains. 723 
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