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ABSTRACT 

Most of our research effort revolves around uncovering data generating processes (i.e., the how and why 

phenomena come to be). In this pursuit, we hope that by knowing the how and why, we can discover new 

knowledge, or perhaps advance our existing knowledge. This short paper presents a look into causal 

discovery and causal inference from the lens of fire resistance and then contrasts that to traditional artificial 

intelligence (AI) methods. Thus, two sets of algorithms are used; causal discovery algorithms are adopted 

to uncover the causal structure between key variables pertaining to the fire resistance of reinforced concrete 

(RC) columns, and causal inference algorithms are applied to estimate the influence of key predictors on 

the fire resistance of the same columns.  
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1 INTRODUCTION 

Discovering new knowledge implies the realization of the data generating process (DGP) responsible for 

creating the phenomena we happen to be interested in [1]. Such realization is often identified via fire tests 

or experiments. A typical experiment is planned to quantify, for example, the influence of some form of 

intervention (i.e., changing the construction material from A to B) on the outcome of interest (e.g., fire 

resistance). Hence, the outcome of such an experiment is thought of as a cause(s) → effect approach [2].  

Once a true DGP is identified, then an engineer may opt to utilize the identified DGP to estimate the 

outcome of a particular testing intervention. This may, in fact, reduce our heavy reliance on expensive fire 

tests. At a minimum, a DGP will allow us to complete our understanding of a particular problem or 

phenomenon. The same could also open the door for new hypotheses and, most importantly, intelligently 

narrow the vast search space of our problems (rather than relying on outdated information that we do not 

seem to break free from).  

Fire resistance is one such problem that is elemental to structural fire engineers. For example, predicting 

fire resistance of structural members is a complex problem that remains, and rightfully so, to be confined 

to the standard fire testing method. It is very likely that the DGP for fire resistance already exists in the 

thousands of fire tests conducted so far. At the end of the day, many such tests were conducted on specimens 

of, more or less, similar features (i.e., columns tend to have a practical range of size, length, reinforcement, 

etc.), which further narrows our search space. This may also ease the identification of possible DGPs. 
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For instance, reinforced concrete (RC) columns made from normal strength concrete (NSC) often display 

good performance under fire conditions. Recent works argue that NSC columns may outperform other 

columns made from high strength concrete (HSC) and ultra high-performance concrete (UHPC) [3]. 

Although HSC and UHPC columns inherently have high strength than NSC, such a strength does not 

correlate to improved fire resistance. Figure 1 illustrates this very point by plotting the relationship between 

compressive strength and fire resistance of about 100 RC columns. As one can see, there is a weak 

correlation. Not surprisingly, columns of relatively low grade strength (NSC) do not seem to guarantee 

achieving high fire resistance.  

 
Fig. 1 Examination of compressive strength and fire resistance of fire-tested RC columns  

The fire resistance of RC columns can be evaluated through codal charts/tables, or hand calculation 

methods, or via finite element simulations, and/or artificial intelligence (AI)/machine learning (ML). These 

methods deliver fire resistance predictions for RC columns given a set of variables. Interestingly, these 

methods do not often agree if applied to a particular and/or a group of columns [4–6]. As such, re-visiting 

the classical phenomenon of fire resistance of RC columns is of interest to this paper.  

This paper presents a casual approach to discovering and inferring the causal mechanism responsible for 

the DGP of the fire resistance of RC columns. Then, this paper compares the newly discovered knowledge 

against domain knowledge and traditional machine learning. For completion, a companion discussion on 

causality can be found in a recent paper from the author’s group [7].  

2 CAUSAL APPROACH 

In a traditional sense, a regression-based approach can be used to predict an outcome, Y, through a set of 

predictors. In such an approach, a predictive expression does not imply that the predictors are causes of Y 

but rather notes the outcome can be predicted using the predictors. On the other hand, a causal analysis 

strives to establish if a set of predictors are likely to cause Y. A look into Fig. 2 showcases a visual depiction 

of how regression differs from causation.  
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Fig. 2 Regression vs. causation 

 

A causal approach comprises four primary steps (see Fig. 3):  

1) Collecting data on the phenomena of interest.  

2) Causal discovery to uncover the underlying DGP by satisfying causal principles. These principles 

include the Markov causal assumption, the causal faithfulness assumption, and the causal 

sufficiency assumption. Following such assumptions lead to the creation of a direct acyclic graph 

(DAG). Full details on such assumptions can be found elsewhere [8–10].  

3) Causal inference is applied to infer how the output (i.e., fire resistance) would change by intervening 

on a predictor. An intervention equates to setting X = x (what is the fire resistance of a RC column 

if its width is increased to 300 mm?) vs. observing X = x. (what is the fire resistance of a RC column, 

given it has a width of 300 mm?).  

4) Finally, the outcome of the causal analysis can be compared to that of existing methods.  

 
Fig. 3 Flowchart of the proposed approach 

3 DATABASE 

The database used in this short study compiles information on 144 fire-exposed RC columns that were 

tested at full scale and under standard fire conditions. The following predictors were collected 1) column 

width, W, 2) steel reinforcement ratio, r, 3) column length, L, 4) concrete compressive strength, fc, 5) 

column effective length factor, K, 6) concrete cover to steel reinforcement, C, 7) the magnitude of applied 

loading, P, and 8) fire resistance time, FR.  
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Table 1 Statistics on collected database  

 W (mm) r (%) L (m) fc (MPa) C (mm) P (kN) FR (min) 

Minimum 203 0.9 2.1 24 25 0 55 

Maximum 610 4.4 5.7 138 64 5373 389 

Average 350.4 2.1 3.9 55.7 42.4 1501.8 176.6 

Standard 

Deviation 
105.3 0.5 0.5 33 7.1 1168.6 82 

Skewness 1.1 1 -0.5 0.9 -1 1.3 0.4 

 

4 METHODOLOGY 

This paper starts by creating a machine learning (ML) ensemble for the above dataset. Then, this paper 

applies a common causal discovery algorithm and then compares its result to that of a previously used 

interpretable machine learning model [11].  

 

The selected ensemble contains three algorithms: random forest (RF), extreme gradient boosted trees 

(ExGBT), and deep learning (DL). The RF algorithm randomly generates multiple decision trees to analyze 

the dataset [12]; such that: 

 

𝑌 =
1
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𝑗=1 )𝐾
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where, J is the number of trees in the forest, k represents a feature in the observation, K is the total number 

of features, cfull is the average of the entire dataset (initial node).  

 

The ExGBT algorithm re-samples the collected observations into decision trees, where each tree sees a 

boostrap sample of the database in each iteration. ExGBT shares some aspects with RF, except that it fits 

successive trees to the residual errors from all the previous trees combined (see Eq. 2).  

 

𝑌 = ∑ 𝑓𝑘(𝑥𝑖)𝑀
𝑘=1 , 𝑓𝑘 ∈ 𝐹 = {𝑓𝑥 = 𝑤𝑞(𝑥), 𝑞: 𝑅𝑝 → 𝑇, 𝑤 ∈ 𝑅𝑇}    (2) 

 

where, M is additive functions, T is the number of leaves in the tree, w is a leaf weights vector, wi is a score 

on i-th leaf, and q(x) represents the structure of each tree that maps an observation to the corresponding leaf 

index [13]. The RF algorithm incorporates 50 leaf nodes, with a minimum of 5 samples to split an internal 

node. 

 

Deep learning algorithm contains a number of layers that are connected via nonlinear activation functions 

e.g., Logistic, PReLu, etc. [14]. This algorithm aims to achieve a general and primarily implicit 

representation that best exemplifies a phenomenon; such that:  

 

netj = ∑ Iniwij
𝑛
𝑖=1 + bj         (3) 

 

Y = f(netj)            (4) 

 

where, Ini and bj are the ith input signal and the bias value of jth neuron, respectively, wij is the connecting 

weight between ith input signal and jth neuron, and f is a PReLu activation function. The number of used 

layers are 64, with 3% learning rate, and Adam optimizer to enhance the processing of observations.  
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Finally, the causal analysis carried out in this short paper starts by disregarding the effects of all predictors 

on each other and assuming that they only have an influence on FR as shown in the DAG listed in Fig. 4. 

As one can see, this DAG also represents how a typical machine learning model assumes the relationships 

with FR and the one used in an earlier study [11]. 

 
Fig. 4 Hypothetical model [Note: T: intervention/treatment, FR: fire resistance] 

5 RESULTS AND DISCUSSION 

This section highlights the main findings of this short paper. 

In order to further highlight the accuracy of the developed ensemble, fire resistance predictions obtained 

herein are also compared against Eurocode 2 [15], as plotted in Fig. 5. This figure infers the good 

predictions from the ensemble and the adequacy of Eurocode 2 predictions for columns within the 60-240 

minute range beyond which these predictions seem to be underestimated.  
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Fig. 5 Comparison of fire resistance prediction in RC columns  

 

The ML ensemble can also be used to identify the importance of each predictor. The analysis shows that 

the following predictors C (100%), P (63%), K (54%), ex (52%), and b (39%), are the most impactful 

features. Figure 6 shares additional insights into the impact of each of these features on the increased 

possibility of improved fire resistance (when all other features remain constant). For example, larger 

columns are expected to have higher fire resistance. 

 
Fig. 6 Insights into key factors influencing fire resistance of RC columns 

 

Since machine learning predictions cannot account for intervention as they are based on observational 

distribution, then a comparison is drawn between ensemble predictions and the causal algorithm. Figure 7 
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shows how intervening by substituting the average value of a given predictor into the ensemble does not 

turn well. In other words, the ensemble is used to estimate FR for a given column with predictors having a 

value equal to the average value noted in Table 1. This action leads to shifting in each of the method’s 

predictions which can be explained by the reliance on the association of both methods to minimize the 

variance of the outcome instead of displaying the actual causal mechanism tying each variable to the fire 

resistance of RC columns. 

 

 
Fig. 7 Comparision applied due to interventions 

On the other hand, Table 2 shows that when all variables are assessed for their interventional impact on FR. 

For example, positive interventions/treatments negatively influence FR for W, L, and K, whereas they 

positively influence FR for r, fc, C, and P. In this instance, having a RC column with average steel 

reinforming ratio (2.1%) will increase FR by about 19 min, while having the same column with an average 

concrete cover (42.4 mm) will increase FR by 87.8 min. 

 
Table 2 Results of analysis for fire resistance (min) 

Treatment variable 
Estimate 

Mean value p-value 

W -245.0 0.11 

r 19.0 0.76 

L -82.0 0.97 

fc 40.9 0.85 

K -81.1 0.02 

C 87.8 5.8e-9 

P 36.3 0.004 

 

6 CONCLUSIONS 

This paper presents a look into causal discovery and causal inference to quantify the magnitude of 

interventions on the fire resistance of RC columns. The following list of inferences can also be drawn from 

the findings of this study: 

• Integrating causality can further accelerate knowledge discovery in our domain.  
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• Interventions are seen to be highly influential in terms of column width, column length, and concrete 

cover. Interventions on the level of applied loading and/or reinforcement ratio did not significantly 

alter fire resistance.  

• Unlike traditional ML analysis, the causal analysis provides us with the most realistic predictions 

as it can accommodate interventions (without needing new tests or experiments).  
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