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Abstract 7 

Advances on the construction front continue to rise as the next industrial revolution (Construction 8 

4.0) nears. One promising front revolves around additively fabricated or simply 3D printed 9 

concrete. The growing number of ongoing parallel research programs has now made it possible to 10 

collect a large amount of data on such concrete as, up to this point, the open literature lacks a 11 

comprehensive database. Thus, this paper presents the largest database spanning over 300 12 

experiments on 3D printed concrete. This database is then examined via multilinear regression as 13 

well as two explainable artificial intelligence (XAI) algorithms, namely, Random Forest and 14 

XGBoost, to arrive at a working model capable of predicting the compressive strength property 15 

for 3D concrete mixtures that incorporate the following seven features: age of specimens, as well 16 

as the magnitude of cement, water, fly ash, silica fume, fine aggregate, and superplasticizer. 17 

Findings from this work infer the superiority of XAI models in predicting the strength property of 18 

3D printed concrete. Our analysis identifies two features, namely, the age of specimens and the 19 

quantity of fine aggregate, as the most important features that can accurately predict the 20 

compressive strength property. Finally, the deployed explainability methods successfully 21 

quantified the highly nonlinear relations between the selected features and compressive strength, 22 

and this newly acquired knowledge can help tailor functional concrete mixtures. 23 

Keywords: 3D concrete; Compressive strength; Machine learning; Database. 24 

1. Introduction 25 

Traditionally, fabricating concrete relies on manually mixing and casting concrete via labor and 26 

formworks. This process requires extensive resources and often yields a large quantity of waste 27 

[1]. Recent works have identified such a negative impact and noted the continued loss of efficiency 28 

in construction [2]. The same works have also identified 3D printing of concrete as a noteworthy 29 

technology that has the potential to improve the current rates of construction productivity as well 30 

as minimize concrete wastage. It goes without saying that automating the process of construction 31 

brings a plethora of advantages, such as faster and safer construction [3]. According to a recent 32 

analysis by Markets and Markets [4], 3D printing concrete can save on construction waste by 30 33 

to 60%, reduce labor costs by 50 to 80%, and fasten production time by 50 to 70%. 34 

3D printing of concrete started to prosper in the mid-1990s [5]. This technology builds in a layer-35 

after-layer approach using a 3D printer (casting equipment) [6,7]. In this printer, the raws are 36 

mixed and then injected via a nozzle [8]. To maintain a proper flow, the concrete mixture is 37 

designed to have acceptable pumpability and cohesiveness (to ensure strong buildability [9–11]). 38 

A number of large scale structures have been constructed from 3D printed concrete [12], including 39 

an apartment building [13] and a 26.3 m long bridge [14]. Figure 1 shows the latest state of 3D 40 
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printed concrete in different countries around the world. This figure shows that the US, China, 41 

UK, and Germany have the most impact on 3D printed concrete and projects related to this 42 

material. 43 

 44 
Fig. 1. Participation of countries in 3D printing concrete 45 

Now, with a series of proof of concepts being constructed and validated, efforts have been targeting 46 

the creation of suitable material models to tailor 3D concrete mixtures. For example, the 47 

mechanical strength of concrete (i.e., compressive strength) is tied to other properties (modulus, 48 

tensile and flexural strength) and is a fixture in the codal provisions [15]. Thus, arriving at a reliable 49 

material model that can predict the compressive strength of 3D printed concrete as a function of 50 

mixture proportions would effective mixture designs and minimize reliance on “trial batching” 51 

approaches [16].  52 

These traditional design techniques are based on trial-and-error methods emanating from 53 

experimental data [17]. However, the search space of such techniques exponentially grows for 54 

complex phenomena of complicated nonlinear relationships and non-quantitative materials [18]. 55 

To overcome the complexity of such nonlinear relations, researchers started to favor nonparametric 56 

models such as those created by machine learning (ML) [19]. Evidently, such predictive models 57 

have been developed for various concrete derivates – with little, if any, on 3D printed concrete 58 

[20]. As such, a key motivation behind this work is to create such ML models for 3D concrete.  59 
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In general, ML models are primarily data-driven, and hence they rely on the availability of dense 60 

and healthy databases to uncover and map the relationships between the features involved and the 61 

compressive strength of 3D printed concrete [21]. Figure 2a displays the body of works related to 62 

ML in this area, and Fig. 2b shows the corresponding number of publications. The latter shows 63 

considerable growth from 120 publications in 2013 to approximately 2250 publications in 2022. 64 

Thus, machine learning (ML) can be selected as one of the hot topics in engineering. 65 

 66 
 (a) Machine learning keywords in concrete 67 
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 68 
(b) Publication trends 69 

Fig. 2. Current state of the art 70 

A closer look into the reviewed publications reveals that ML has been used to predict the 71 

compressive strength of conventional concrete via artificial neural networks (ANN) [22], support 72 

vector machines (SVM) [23], decision trees [24–26], to name a few. For example, Lee [27] noted 73 

the high accuracy of ANN in predicting the properties of concrete mixtures. Further, Yeh et al. 74 

[28] used the Genetic Operation Tree (GOT) algorithm to predict the compressive strength of high 75 

performance concrete with great success. Nunez [29] concluded that ML had been verified to 76 

predict various concretes' compressive strengths. Han [30] reported that ANN and the random 77 

forest algorithm have high predictivity, especially in small datasets. Ozcan et al. [31] and Roa [32] 78 

reported similar success in predicting the compressive strength of concrete.  79 

The aim of this study, and hope behind its investigation, is to (1) compile the largest database on 80 

the compressive strength of 3D printed concrete and to create explainable AI models to (2) predict 81 

the compressive strength of such concrete via XAI model. Thus, we will present results from 307 82 

tests gathered from 53 different publications. In this database, seven features were collected (i.e., 83 

cement, silica fume, superplasticizer, water, fine aggregate, age, and fly ash) to predict the 84 

compressive strength. Then, this database was examined via multilinear regression as well as two 85 

explainable artificial intelligence (XAI) algorithms, namely, Random Forest and XGBoost, to 86 

arrive at material models. The results from our analysis show the superiority of the XAI models, 87 

and hence these models were augmented with explainability measures, namely, feature 88 

importance, accumulated local effects (ALE), and partial dependence plot (PDP), to quantify the 89 

highly nonlinear relations between features and compressive strength and hence may accelerate 90 

our research efforts.  91 
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2. A brief overview of 3D printing of concrete 92 

2.1 Past and current efforts  93 

Khoshnevis pioneered 3D printing of concrete using the contour crafting method at the University 94 

of Southern California. Since then, much research and investments have been implemented to 95 

improve the performance of this innovative manufacturing method in many aspects, including 96 

extrudability, time setting, binder jetting, etc. [33]. Many universities and institutions have serious 97 

investments in experimental and numerical research (see Fig. 3a). Similarly, Fig. 3b shows a steady 98 

rise in the number of publications in this area as well. 99 

 100 
 (a) Demonstration of universities active in 3D concrete 101 
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 102 
(b) Number of publications for 3D printing concrete [Note: as noted in the Dimension.ai 103 

database] 104 

Fig. 3 Current state of the art 105 

2.2 Trending areas of research  106 

Proper grading of concrete leads to realizing stable structures [34,35][36]. There are four key areas 107 

that dominate the interest in the front of 3D concrete (see Fig. 3), namely; 108 

1. Extrudability of cementitious material in a continuous manner is influenced by the size of 109 

dry materials such as fine aggregate [37][46] [39]. 110 

2. Buildability is defined as the ability of cementitious material to remain in a stable shape 111 

under loading [40–42]. 112 

3. Open time is often defined as the duration of time in which the cementitious material can 113 

maintain its performance through printing [43,44]. 114 

4. Flowability identifies the transportability of the cementitious materials, including fibers , 115 

during casting to the nozzle and can be evaluated via the slump test [45], the V-funnel test 116 

[46], and the jumping table test [47] [48]. 117 
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 118 
Fig. 3 The illustration of the body of works related to 3D printing concrete [from Dimensions.ai 119 

[49]] 120 

2.3 Notable projects  121 

As mentioned earlier, there is a continued rise and interest in adopting 3D printed concrete in 122 

construction projects [50–53]. For example, recent works explored reinforcing 3D printed concrete 123 

via fibers [54–56], traditional rebars and post-installed reinforcement, and mesh molds [57] Figure 124 

4 shows some of the most notable and recent projects, including the building of the largest 3D 125 

printed pedestrian bridge in China in 2019 [58], retaining walls for flood mitigation in China in 126 

2019 [59], residual buildings in Texas for the homeless in 2019 [60], apartments in Bavaria in 127 

2021 [61], shelters for troops in 2021 in California [52], and the world’s largest 3D printed 128 

structure in 2021 in UAE [50]. Another future goal is to fabricate extraterrestrial habitats [62].  129 

 130 
Fig. 4 Timeline for 3D concrete [Note: 3DPC denotes 3D printed concrete] 131 
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3. Description of database and statistical analysis  132 

The collected database for the present work has been compiled from 53 experimental studies and 133 

contains 307 specimens. This database has seven features, namely, cement (C), water (W), 134 

superplasticizer (SP), fly ash (Fa), silica fume (SF), fine aggregate (FA), age (A), and the response 135 

as compressive strength (CS) of each tested specimen. The seven features were selected as noted 136 

to be the most common factors and predictors in other types of concrete, such as high performance 137 

concrete [63,64], self-compacting concrete [65] and normal concrete [66]. Please note that all data 138 

used in this study will be provided in this paper's appendix. 139 

The statistical distribution of this database is shown in Fig. 5. Similarly, Table 1 describes the 140 

overview of the statistics of the data. These statistics show that the overall range of components in 141 

our dataset is normal and acceptable, as commonly witnessed in recent tests. The same table shows 142 

that cement, water, and fine aggregate are fairly symmetrical (skewness is between -0.5 and 0.5), 143 

while age and compressive strength are moderately skewed (skewness -1 and -0.5 or between 0.5 144 

and 1). Finally, fly ash, silica fume, and superplasticizer are noted to be highly skewed since these 145 

components were used at various values in different experiments and were not used at all in others.  146 

Table 1 Statistical insights into the features 147 

Component Minimum Maximum Mean 
Standard 

Deviation 
Skew Kurtosis 

Cement, C (Kg/m3) 0 1069.41 502.18 228.88 0.37 -0.12 

Water, W (Kg/m3) 1.89 455 213.07 98.47 0.41 0.29 

Fly ash, Fa (Kg/m3) 0 1026 113.16 162.51 2.77 11.1 

Silica fume, SF (Kg/m3) 0 345 43.25 57.24 2.46 8.93 

Fine aggregate, FA (Kg/m3) 0 1623 797.83 449.89 -0.27 -1.19 

Superplasticizer, SP (%) 0 3.4 1.44 3.63 6.96 57.7 

Age, (day) 0.41 56 15.73 12.74 0.51 -0.33 

Compressive strength, CS (MPa) 0.005 125 40.82 23.01 0.77 0.79 

 148 
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 149 

Fig. 5. The frequency of features 150 
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In addition, Fig. 6a, describes the Pearson correlation matrix for the database. This matrix displays 151 

the linear relation between feature pairs to be between -1 and +1 (approaching unity implies a 152 

strong linear correlation). This matrix shows that the linear correlation between age and 153 

compressive strength is the highest and is at 0.48. Collectively, there is not a large linear correlation 154 

within the database. For instance, the Pearson correlations between cement and silica fume with 155 

compressive strength are 0.096 and 0.14, respectively. 156 

It should be noted that there is a low correlation between water and superplasticizer and strength. 157 

In lieu of the Pearson correlation, the Spearman correlation matrix displays the monotonic relation 158 

within the database (see Fig. 6b). Like the Pearson correlation, the range of correlations is also 159 

between -1 and +1. From this view, the features of noteworthy monotonic relation are the age 160 

(0.49), followed by a weaker association in silica fume (0.25) and cement (0.13).  161 

 162 
(a) Pearson correlation matrix 163 

 164 
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(b) Spearman correlation matrix 165 

Fig. 6 Pearson and Spearman matrices 166 
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4. Machine learning algorithms  167 

The compiled database was examined through three algorithms: multilinear regression, XGBoost, 168 

and Random Forest. We carried out the machine learning analysis by using the Python Scikit-learn 169 

[67] package. These are briefly described herein. Please note that all codes used in this study will 170 

be provided in the appendix of this paper. 171 

4.1 Multilinear regression 172 

In general, linear regression can be categorized into two classes: simple-linear regression and 173 

multilinear regression [68]. The latter is of interest to this work as multilinear regression considers 174 

the effects of multiple features (𝑥) to predict a target (y) [69][70]. The formula of multilinear 175 

regression is presented in Eq. 1. 176 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑖𝑥𝑖         (1) 177 

Where  𝑏1, 𝑏2, … , 𝑏𝑖  are the weights and 𝑏0 is the y-intercept. Please note that the error is not 178 

shown in this equation.  179 

4.2 XGBoost  180 

The XGBoost is a tree-based algorithm that adopts ensemble learning (i.e., combining individual 181 

models) [71]. This algorithm prevents overfitting with the regularized boosting method and can 182 

automatically handle missing values. Moreover, the XGBoost can cross-validate at each iteration. 183 

After each iteration, the algorithm’s learning rate is adjusted as a weight on each training (i. e. Eta 184 

Hyperparameter) [72].  185 

4.3 Random Forest 186 

The random forest algorithm is a collection of decision trees [73]. Each decision tree splits the 187 

input data recursively using the decision nodes, and the optimal split is found by increasing the 188 

entropy gain. This algorithm takes the average value of all decision trees to arrive at the final 189 

outcome [74][75].  190 

4.4 Details on ML analysis 191 

In this analysis, the database was split into two datasets, namely, the training dataset and the testing 192 

dataset. In our model, 80% of the total dataset (261 samples) was selected as training, and remained 193 

dataset (66 samples) was considered as test-size. This split ratio was arrived at via sensitivity 194 

analysis and is commonly used in concrete problems, as noted in a recent review [76]. Before 195 

fitting the data in our model, the dataset was normalized since there were seven different features 196 

with seven different units and magnitudes. By normalization, the values of numeric features in our 197 

dataset were altered to a common scale without distorting differences in the ranges of values or 198 

losing information. 199 

4.4.1 k-cross validation method 200 

The k-cross validation method is used herein to develop all ML models [77]. In a k-fold cross 201 

validation, a dataset is divided into k datasets with the same numbers. In each validation process, 202 

one dataset is selected for testing the model, and remained datasets are considered for training the 203 

model – see Fig. 7 [78].  204 
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 205 
Fig. 7 Schematic of K-Cross Validation [79] 206 

4.4.2 Performance Evaluation 207 

Four commonly used metrics in the area of concrete were selected, namely, Mean Absolute Error 208 

(MAE), Mean Squared Error (MSE), root-mean-square deviation (RMSE), and coefficient of 209 

determination (R2) in order to evaluate the accuracy of the ML models [80]. 210 

Mean squared error (MSE) 211 

The mean squared error (MSE) is another metric that can evaluate the performance of a model. As 212 

it is calculated based on the square of Euclidean distance, it is always a positive number that 213 

decreases as the error approaches zero. Thus, it can be one of the preferred metrics for loss 214 

functions since it exaggerates the errors (i.e., squared distances between anticipated and actual 215 

values). 216 

MSE =  
1

n
∑(yi − ŷi)

2

n

i=1

 

 

(2) 

Coefficient of determination (R2) 217 

The coefficient of determination is called 𝑅² and yields a value between -1 and +1. This metric 218 

measures the proportion of the variance of a dependent variable that is explained by a regression 219 

model and defined by: 220 

𝑅2 = 1 −
∑ (yi − ŷi)

2n
i=1

∑ (yi − y̅)2n
i=1

 

 

(3) 

Where 𝑦𝑖 is an observed target, �̂�𝑖 is the predicted target of the regression model, both indexed by 221 

𝑖, and ӯ is the mean of the dependent variable.  222 
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Mean absolute error (MAE) 223 

The mean absolute error (MAE) calculates the error based on variances between predictions and 224 

the ground truth. This metric is computed as the total sum of errors divided by the number of 225 

experiments in order to take an average of errors. 226 

MAE =
∑ |yi − xi|

n
i=1

n
 

(4) 

Root mean square error (RMSE) 227 

The root Mean Square Error (RMSE) is the standard deviation of the residuals (i.e., prediction 228 

error) and can be calculated as shown. 229 

𝑅𝑀𝑆𝐸 = √
∑ (yi − ŷi)

2n
i=1

𝑛
 

 

(5) 

5. Discussion and results 230 

This section details the outcome of our analysis. As mentioned above, all models were assessed 231 

by four different metrics, namely, mean squared error (MSE), coefficient of discrimination (𝑅2), 232 

root mean squared error (RMSE), and mean absolute error (MAE). 233 

5.1 Multilinear regression  234 

Equation 6 presents the outcome of the multilinear regression analysis. Given the largest 235 

magnitude of their weights, this equation reveals that age and superplasticizers have the largest 236 

influence on the model. Table 2 further shows the performance of this model. As can be seen, this 237 

model did not perform adequately and scored poorly, especially with regard to R2 as well as in 238 

relation to the observed residuals (see Fig. 8). By looking at Fig. 8; one can reinforce the notion 239 

that the performance of this particular model is indeed poor. This can be an indication of the 240 

assumption that linearity between the features and strength is faulty.  241 

𝑦 = 13.18 − 0.085𝑥1 + 0.032𝑥2 + 0.984𝑥3+0.0776𝑥4 + 0.010𝑥5 + 0.006𝑥6 + 0.567𝑥7     (6) 242 

Where 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 𝑎𝑛𝑑 𝑥7  are coefficients for water, cement, age, silica fume, fine 243 

aggregate, fly ash, and superplasticizer, respectively.  244 

Table 2 Performance of the multilinear regression model 245 
Metrics Training dataset Testing dataset 

MSE 288.77 405.63 

𝑅2 0.233 0.422 

MAE 13.31 16.14 

RMSE 16.99 20.14 

 246 

 247 
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 248 
Fig. 8 Comparison of model performance 249 

5.2 XGBoost  250 

The metrics for the XGBoost model are listed in Table 3. As noted here, this model substantially 251 

outperforms the multilinear model. For instance, the coefficient of discrimination ( 𝑅2) 252 

experienced a sharp increase from 0.233 in multilinear regression to 0.981 in XGBoost in training 253 

and from 0.422 to 0.831 in testing. A similar observation can be seen in Fig. 9.  254 

Table 3 Performance of model 255 
Metrics Training dataset Testing dataset 

MSE 7.30 213.33 

𝑅2 0.981 0.831 

MAE 1.05 8.37 

RMSE 2.71 14.60 
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 256 
Fig. 9 Comparison of model performance 257 

5.3 Random forest regression metric  258 

Table 4 lists the result of the random forest model on two different datasets (i.e., the training dataset 259 

and the testing dataset). As one can see, this model performs well across the training and testing 260 

datasets. In addition, the results of this analysis also show that this model outperforms all other 261 

models examined herein. Figure 10 also confirms this observation.  262 

Table 4 Performance of model 263 
Metrics Training dataset Testing dataset 

MSE 23.72 75.60 

𝑅2 0.956 0.846 

MAE 3.30 6.00 

RMSE 4.87 8.70 

 264 
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 265 
Fig. 10 Comparison of model performance 266 

5.4. Explainability analysis 267 

As mentioned above, the random forest is the best performing model in this study. Thus, we will 268 

apply explainability measures to this model to gain valuable insights into its performance and the 269 

influence of each of the features on the accurate predictions of compressive strength. Each 270 

explainability measure is explained and demonstrated herein.  271 

5.4.1 SHAP summary and feature importance plots 272 

The SHAP (SHaply Additive explanation) is a game theory-based method that allows users to peek 273 

into the reasoning of ML algorithms. When applied to a specific ML model, SHAP can generate a 274 

series of visualizations. Two such representations include the summary plot and the feature 275 

importance plot.  276 

The summary plot describes each feature's importance by showing its range's influence on accurate 277 

predictions (see Fig. 11a). The summary plot's color illustrates each feature's value from low to 278 

high. Low values are associated with soft (blue) color, while bright (red) color defines high values. 279 

Each point in the summary plot represents one observation from the compiled database. The 280 

positivity and negativity of each point on model predictions can be observed in the horizontal axis 281 

of this plot. Positivity means the selected sample increases the prediction accuracy and vice versa.  282 

Looking at Fig. 11 shows that age has the broadest distribution in comparison to other features and 283 

hence can significantly affect the predictions. On the other hand, fly ash is associated with the 284 

narrowest distribution, hence its small influence on model predictions. The same figure shows that 285 

the age, fine aggregate, and silica fume with high value (i, e. red color) positively impact the 286 

model’s predictions of accurately capturing the compressive strength. In other words, the 287 

aforenoted features are identified to be the best features that have led to accurately predicting the 288 
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compressive strength. On the contrary, a large quantity of water negatively affects the predictions, 289 

possibly as it affects the flowability and strength of concrete (which was also noted by [81,82]). 290 

 291 
(a) Summary plot of SHAP values 292 

 293 
(b) Factor importance plot 294 

Fig. 11 Results of SHAP analysis 295 

Figure 11b builds on Fig. 11a and ranks the features in terms of their importance. As one can see, 296 

the summary plot of SHAP value does not articulate how each feature influences the model's 297 

prediction capability. For instance, this figure shows that age is the most influential feature but 298 

does not state if the influence is positive or negative. In other words, this particular figure indicates 299 

that the model heavily relied on age to arrive at accurate predictions of the compressive strength 300 

(as opposed to its reliance on fly ash or superplasticizers).  301 
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5.4.2 Partial dependence plots 302 

The partial dependence plot (PDP) is the third explainability measure that will be employed herein. 303 

This plot explains the relation of each feature on predictions by plotting how varying the value of 304 

a feature while keeping all other features constant alter the final output of a model – see Fig. 12 305 

[83]. Figure 12 shows that the strength increases with age – more so significantly after the first 306 

few days. Similarly, increasing the amount of cement also increases the compressive strength of 307 

3D concrete. But, at around 700 kg of cement, the increase in strength seems to stabilize. On the 308 

other hand, the compressive strength is seen to fluctuate at some distinct proportions of some 309 

features. For example, the strength starts to drop slightly beyond 250 kg of water. This same is 310 

also seen in fly ash between 50 and 200 kg. For some features, namely, fly ash or superplasticizers, 311 

their values do not seem to affect model predictions by much.  312 

5.4.3 Accumulated local effect (ALE) 313 

It is worth noting that PDPs are designed to maintain the assumption of independence of features, 314 

and hence these plots do not distinguish for correlation. Thus, to remedy this limitation, the 315 

accumulated local effects (ALE) plot is applied. The ALE plots are unbiased alternatives because 316 

they address the bias that arises in PDP when a feature is highly correlated with other features [84]. 317 

Comparing the vertical axis of PDPs and ALEs shows these axes differ. For example, this in a 318 

PDP represents the marginal impact of features on the response. In other words, it does not 319 

represent this variable's predicted value or relative impactn other variables [85]. On the other hand, 320 

the effect of each feature on the response, as given by the value of the feature, is presented in the 321 

vertical axis in ALEs. 322 

Further, an ALE averages over the features using the conditional distribution 𝑝(𝑥2|𝑥1) rather than 323 

the marginal distribution 𝑝(𝑥2)  as in PDP. This avoids extrapolating the data to unrealistic 324 

combinations of feature values, as in PDP. Instead of averaging model predictions, ALE averages 325 

over the change in model predictions, which represents the local effect of 𝑥1on 𝑓(𝑥1, 𝑥2). This 326 

effectively blocks and offsets possible correlations that might exist between a feature 𝑥1 and other 327 

features [86].  328 

Figure 12 shows ALEs for all involved features. It is clear that there is a convergence between the 329 

PDPs and ALEs. For example, having a mixture be 20 and 50 days old is seen to increase the 330 

compressive strength by 10 and 20 MPa, on average, respectively.  331 

5.4.4 Tailoring the strength of 3D concrete via XAI 332 

The same figure can be used to tailor concrete mixtures for specific strengths. For example, to 333 

maximize the compressive strength, a mixture is expected to have the following proportions: 334 

• Cement 600-700 kg. → leads to an increase of 4-7 MPa. 335 

• Water: less than 100 kg. → leads to an increase of about 7.5 MPa. 336 

• Fine aggregates > 1200 kg. → leads to an increase of about 0.5 MPa. 337 

• Silica fume > 70 kg. → leads to an increase of about 12.5 MPa. 338 

In a way, this figure can help designers tailor 3D mixtures for a given strength. 339 
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Fig. 12 Partial dependence plot (PDP) and accumulated local effects (ALE) 340 
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6. Conclusions 341 

This paper examines the predictability of 3D printed concrete through machine learning. Based on 342 

the 307 analyzed and compiled samples from previous literature and also seven feature variables, 343 

the compressive strength of 3D printing concrete has been anticipated and validated by 5-fold 344 

cross-validation with two repetitions. Three different algorithms, namely, random forest regressor, 345 

XGBoost regressor, and multilinear regression, are implemented in this study. In addition, the 346 

performance of our model was assessed by metrics, namely, R2, MAE, MSE, and RMSE. For each 347 

algorithm, the prediction error plot and residual plot are included. 348 

The main results are listed herein: 349 

• The random forest model has reached an average 90.6% accuracy and thus performed the 350 

best compared to XGBoost.  351 

• The age of 3D printing concrete is the most influential factor for predicting compressive 352 

strength, followed by the fine aggregate, cement, water, and silica fume. On the contrary, 353 

the superplasticizer and fly ash have the least effect on the target. 354 

• XAI methods successfully quantified the highly nonlinear relations between features and 355 

compressive strength. This can allow us to tailor functional concrete mixtures. 356 

• Future works should continue and extend this research. We encourage researchers to 357 

expand and collect more data on 3D concrete such that this research grows at a faster rate 358 

with the integration of XAI methods.  359 

• To further amplify the positive use of AI in this area, we suggest exploring the use of 360 

physics-informed AI, together with XAI. 361 
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Appendix A 719 

Table A1. Database used in this study. This database will be provided upon the publication of 720 

this paper.  721 

Ref. Cement (Kg) Water (Kg) 
Silica 

fume 
SP (%) Fine Agg. Fly ash Age CS 

Khalil, et 

al.[87] 
683 236 0 0.25 850 0 7 70 

 675 236 0 0.26 850 0 7 78 

 682 236 0 0.25 850 0 28 87 

 675 236 0 0.26 850 0 28 86 

 683 236 0 0.25 850 0 56 85 

 675 236 0 0.26 850 0 56 91 

Shakor, et al. 

[88] 
375 125 0 0.66 375 0 7 56.42 

 375 125 0 0.66 375 0 7 63.12 

 375 125 0 0.66 375 0 28 59.7 

 375 125 0 0.66 375 0 28 68.95 

Nerella, et al. 

[89] 
430 180 180 1.2 1240 170 3 49.7 

 430 180 180 1.2 1240 170 21 80.6 

Rahul, et al. 

[6] 
573.6 262.2 81.9 0.17 491.7 164 28 70.9 

 663 265.2 2.47 0.13 497.2 165.7 28 71.7 

 663 265.2 0.82 0.18 497.2 165.7 28 67.4 

Alvarez-

Fernandez, et al. 

[90] 

12 29 0 0 0 0 28 0.9 

 13 20 0 0 0 0 28 3.3 

 24 18 0 0 0 0 28 9.3 

 24 17 0 0 36 0 28 13.4 

 24 15 0 0 48 0 28 23.5 

Ding, et al. 

[91] 
1000 350 0 0.071 1000 0 28 42.03 

 1000 420 0 0.086 1000 0 28 43.04 

 1000 350 0 0.09 1000 0 28 46.74 

 1000 420 0 0.095 1000 0 28 34.01 

Rahul, et al. 

[92] 
574 262 82 34 1230 164 7 55 

 663 265 0 34 1243 166 7 54 

 663 265 0 34 1486 166 7 52 

Shakor, et al. 

[93] 
5.06 1.89 0 0.5 6.075 0 28 14.91 

 5.06 1.89 0 0.5 6.075 0 28 23.34 

 5.06 1.89 0 0.5 6.075 0 28 13.83 

 5.06 1.89 0 0.5 6.075 0 28 13.43 

 5.06 1.89 0 0.5 6.075 0 28 50.82 

 5.06 1.89 0 0.59 6.075 0 28 31.09 

 5.06 1.89 0 0.59 6.075 0 28 28.25 
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 5.06 1.89 0 0.59 6.075 0 28 25.37 

 5.06 1.89 0 0.59 6.075 0 28 25.33 

 5.06 1.89 0 0.59 6.075 0 28 51.92 

Annapareddy, 

et al. [94] 
138 120 12 0 243 122.4 7 19 

 138 120 12 0 243 122.4 7 19 

 138 906.9 12 0 221.7 122.4 7 22 

Kazemian, et 

al. [95] 
600 259 0 0.05 1379 0 7 32.9 

 540 259 60 0.16 1357 0 7 35.2 

 600 259 0 0.06 1379 0 7 31 

 600 259 0 0.15 1379 0 7 31.8 

 600 259 0 0.05 1379 0 28 44.7 

 540 259 60 0.16 1357 0 28 49.9 

 600 259 0 0.06 1379 0 28 45.1 

 600 259 0 0.15 1379 0 28 45.9 

Heever, et al. 

[96] 
562 256 81.4 0.6 1144 162 28 38.2 

Bos, et al. 

[97] 
37.5 144 0 0 48 0 0 40.6 

 37.5 126 0 0 48 0 0 41.5 

 37.5 117 0 0 48 0 0 42.3 

 37.5 114 0 0 48 0 0 43.5 

 37.5 108 0 0 48 0 0 55.4 

Hack, et al. 

[98] 
595.1 342.8 27.1 0 1064 0 2 59.3 

Rushing, et 

al. [99] 
300 141 0 0 690 0 0 40.5 

Panda, et al. 

[100] 
300 350 250 0 1220 675 28 31.3 

Van Der 

Putten, et al. 

[101] 

620.5 226.5 0 0 1241 0 0 62 

Lee, et al. 

[102] 
289 168 0 1.1 899 51 1 6 

 289 168 0 1 899 51 1 6.8 

 289 168 0 0.95 899 51 1 6.9 

 289 168 0 1.1 899 51 1 6.1 

 289 168 0 1.1 899 51 1 6 

 289 168 0 1.05 899 51 1 7 

 289 168 0 1.25 899 51 1 7.5 

 289 168 0 1.1 899 51 1 7.3 

 289 168 0 1.1 899 51 7 28.5 

 289 168 0 1 899 51 7 28 

 289 168 0 0.95 899 51 7 28.1 

 289 168 0 1.1 899 51 7 25.1 

 289 168 0 1.1 899 51 7 28.1 

 289 168 0 1.05 899 51 7 25.3 

 289 168 0 1.25 899 51 7 28.1 
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 289 168 0 1.1 899 51 7 30 

 289 168 0 1.1 899 51 28 37 

 289 168 0 1 899 51 28 37 

 289 168 0 0.95 899 51 28 36.9 

 289 168 0 1.1 899 51 28 35.5 

 289 168 0 1.1 899 51 28 36 

 289 168 0 1.05 899 51 28 35.5 

 289 168 0 1.25 899 51 28 36.9 

 289 168 0 1.1 899 51 28 40 

 588 235 84 2 936 168 1 17 

 588 235 84 2.1 936 168 1 20.5 

 588 235 84 2.05 936 168 1 21 

 588 235 84 2 936 168 7 31 

 588 235 84 2.1 936 168 7 50 

 588 235 84 2.05 936 168 7 51 

 588 235 84 2 936 168 28 64 

 588 235 84 2.1 936 168 28 70 

 588 235 84 2.05 936 168 28 72 

Dressler, et 

al. [103] 
600 270 0 0.3 1258 0 28 59.9 

 600 270 0 0.3 1258 0 28 64.8 

 600 270 0 0.3 1258 0 28 66 

 600 270 0 0.3 1258 0 28 65.7 

Assaad, et al. 

[104] 
506 247.5 44 2.1 0 0 28 42.5 

 506 247.5 44 1.9 0 0 28 30.6 

 506 247.5 44 1.8 0 0 28 37.9 

 598 292.5 52 0.95 0 0 28 51.3 

 598 292.5 52 0.9 0 0 28 39.8 

 598 292.5 52 0.8 0 0 28 47.7 

 690 262.5 60 1.25 0 0 28 66.7 

 690 262.5 60 1.15 0 0 28 46.2 

 690 262.5 60 1.0 0 0 28 62.6 

Le, et al. 

[105] 
579 216 83 1 1241 165 1 20 

 579 216 83 1 1241 165 7 80 

 579 216 83 1 1241 165 28 110 

 579 216 83 1 1241 165 56 125 

Weng, et al. 

[9] 
300 90 30 8.19 150 300 7 31 

 300 90 30 8.19 150 300 7 27 

 300 90 30 8.19 150 300 7 36 

 300 90 30 8.19 150 300 7 28 

 300 90 30 8.19 150 300 7 35 
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 300 90 30 8.19 150 300 7 34 

 300 90 30 8.19 150 300 14 37 

 300 90 30 8.19 150 300 14 35 

 300 90 30 8.19 150 300 14 39 

 300 90 30 8.19 150 300 14 36 

 300 90 30 8.19 150 300 14 41 

 300 90 30 8.19 150 300 14 38 

 300 90 30 8.19 150 300 28 50 

 300 90 30 8.19 150 300 28 42 

 300 90 30 8.19 150 300 28 51 

 300 90 30 8.19 150 300 28 41 

 300 90 30 8.19 150 300 28 45 

 300 90 30 8.19 150 300 28 60 

Joh, et al. 

[106] 
576 240 79 1 1154 172 28 23.5 

Meurer, et al. 

[107] 
550 280 0 0 1172 250 22 65.8 

Nerella, et al. 

[108] 
627 263.34 0 0.75 1391 0 1.00 41.9 

 627 263.34 0 0.75 1391 0 28.00 64.5 

 391 164.22 213 2 1260 213 1.00 28.3 

 391 164.22 213 2 1260 213 28.00 97.9 

Panda, et al. 

[109] 
0 144.09 101.86 1.40 1220.00 572.34 28.00 36.00 

Baz, et al. 

[110] 
614 273 68 0.26 850 0 3 30.00 

 614 273 68 0.36 850 0 3 27.1 

 614 273 68 0.4 850 0 3 29.6 

 614 306 68 0.4 850 0 3 25.1 

 614 273 68 0.26 850 0 28 49.1 

 614 273 68 0.36 850 0 28 46.6 

 614 273 68 0.4 850 0 28 46.5 

 614 306 68 0.4 850 0 28 46.7 

Singh, et al. 

[111] 
1000.0 350.00 0 0.08 1000.00 0 28.00 30.0 

 1000.0 350.00 0 0.087 1000.00 0 28.00 26.3 

 1000.0 350.00 0 0.115 1000.00 0 28.00 29.5 

 1000.0 350.00 0 0.132 1000.00 0 28.00 33.5 

 1000.0 350.00 0 0.152 1000.00 0 28.00 30.5 

Ding, et al. 

[112] 
1000.00 350.00 0 0.083 1000.00 0 28.0 21.5 

 1000.00 361.25 0 0.103 875.00 0 28.0 28.5 

 1000.00 372.50 0 0.125 750.00 0 7.0 11.0 

 1000.00 372.50 0 0.125 750.00 0 14.0 15.6 

 1000.00 372.50 0 0.125 750.00 0 28.0 19.3 

 1000.00 395.00 0 0.185 500.00 0 28.0 18.0 

Ding, et al. 

[113] 
1000.0 350.0 0 0.071 1000.0 0 0.104 0.030 
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 1000.0 385.0 0 0.074 750.0 0 0.104 0.042 

 1000.0 420.0 0 0.086 500.0 0 0.104 0.045 

Kloft, et al. 

[114] 
500.00 160.00 25.00 0.77 1180.00 0 14.0 56.9 

 500.00 160.00 25.00 0.77 1180.00 0 28.0 59.3 

Rahul, et al. 

[115] 
660.00 264.00 0 0.08 1237.00 165.00 0.041 0.0050 

 660.00 264.00 0 0.08 1237.00 165.00 0.083 0.0064 

 660.00 264.00 0 0.08 1237.00 165.00 0.125 0.0079 

 612.00 245.00 0 0.08 938.00 153.00 0.041 0.0078 

 612.00 245.00 0 0.08 938.00 153.00 0.083 0.0100 

 612.00 245.00 0 0.08 938.00 153.00 0.125 0.0137 

Mechtcherine, 

et al. [116] 
350.00 179.00 0 1.02 1179.00 140.00 10.00 46.9 

Overmeir, et 

al. [117] 
483.00 347.00 70.00 0.26 284.00 0 7.00 32.00 

 483.00 347.00 70.00 0.26 284.00 0 14.00 46.5 

 483.00 347.00 70.00 0.26 284.00 0 28.00 51.0 

 458.00 355.00 51.00 0.24 549.00 0 7.00 32.00 

 458.00 355.00 51.00 0.24 549.00 0 14.00 44.0 

 458.00 355.00 51.00 0.24 549.00 0 28.00 56.0 

Cho, et al. 

[118] 
579.00 261.00 83.00 1.48 1167.00 165.00 1.00 7.9 

 579.00 261.00 83.00 1.48 1167.00 165.00 7.00 55.6 

 579.00 261.00 83.00 1.48 1167.00 165.00 28.00 70.6 

 579.00 261.00 83.00 1.48 1167.00 165.00 56.00 80.0 

Kruger, et al. 579.00 261.00 83.0 1.48 1167.00 165.0 1.0 8.1 

[119] 579.00 261.00 83.0 1.48 1167.00 165.0 7.0 58.5 

 579.00 261.00 83.0 1.48 1167.00 165.0 28.0 74.3 

 579.00 261.00 83.0 1.48 1167.00 165.0 56.0 78.2 

Liu, et al. 

[120] 
756.40 226.92 24.40 0.35 1220.00 48.80 1.00 13.28 

 756.40 226.92 24.40 0.35 1220.00 48.80 4.00 21.54 

 756.40 226.92 24.40 0.35 1220.00 48.80 7.00 23.62 

 756.40 226.92 24.40 0.35 1220.00 48.80 14.00 24.44 

 756.40 226.92 24.40 0.35 1220.00 48.80 28.00 26.87 

Tao, et al. 

[121] 
1069.41 300.90 0 0.53 969.60 0 3.0 19.0 

 0 396.31 0 0 912.57 0 3.0 18.5 

 712.94 332.71 0 0.79 950.59 0 3.0 19.0 

 1069.41 300.90 0 0.53 969.60 0 7.0 25.5 

 0.0 396.31 0 0 912.57 0 7.0 24.5 

 712.94 332.71 0 0.79 950.59 0 7.0 25.7 

 1069.41 300.90 0 0.53 969.60 0 28.0 35.5 

 0.0 396.31 0 0 912.57 0 28.0 35.0 

 712.94 332.71 0 0.79 950.59 0 28.0 35.7 
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Xiao, et al. 

[121] 
320.00 112.00 0 0.075 320.00 0 28.00 24.00 

 320.00 134.00 0 0.084 160.00 0 28.00 17.00 

 320.00 112.00 0 0.131 320.00 0 28.00 34.00 

 320.00 134.00 0 0.153 160.00 0 28.00 28.50 

 320.00 112.00 0 0.075 320.00 0 28.00 32.00 

Ye, et al. 

[122] 
656.00 275.4 246.00 0.294 246.00 118.00 28.00 39.80 

Ma, et al. 

[123] 
702.7 229.1 61.1 0.17 1222.0 0 3.0 41.5 

 702.7 229.1 61.1 0.17 1222.0 0 7.0 51.3 

 702.7 229.1 61.1 0.17 1222.0 0 28.0 57.0 

Baz, et al. 

[124] 
614.00 245.60 68.00 0.26 850.00 0 3.0 24.00 

 614.00 245.60 68.00 0.26 850.00 0 7.0 30.00 

 614.00 245.60 68.00 0.26 850.00 0 28.0 46.00 

Rahul, et al. 

[125] 
376.3 263.4 0 1.4 1279.3 0 28.00 35.00 

 374.2 261.9 0 0.99 900.8 0 28.00 32.00 

 370.8 259.6 0 0.90 909.4 0 28.00 31.00 

Ji, et al.  

[126] 
444.00 210.00 41.4 0.09 870.00 96.6 28.00 34.5 

Chen, et al.  

[127] 
331.00 248.00 0 2.05 1242.00 0 1.00 1.0 

 331.00 248.00 0 2.05 1242.00 0 1.00 6.5 

 331.00 248.00 0 2.05 1242.00 0 1.00 10.7 

 331.00 248.00 0 2.27 1242.00 0 1.00 15.00 

 331.00 248.00 0 2.05 1242.00 0 7.00 12.5 

 331.00 248.00 0 2.05 1242.00 0 7.00 25.7 

 331.00 248.00 0 2.05 1242.00 0 7.00 34.5 

 331.00 248.00 0 2.27 1242.00 0 7.00 35.00 

 331.00 248.00 0 2.05 1242.00 0 28.00 13.00 

 331.00 248.00 0 2.05 1242.00 0 28.00 34.7 

 331.00 248.00 0 2.05 1242.00 0 28.00 39.00 

 331.00 248.00 0 2.27 1242.00 0 28.00 45.7 

Jo, et al. 

[128] 
300.00 92.25 0 0 525.00 0 0 60.4 

 300.00 84.55 0 0 477.27 0 0 62.00 

Wang, et al. 

[129] 
481.00 171.00 0 2.0 408.00 157.00 28.00 31.00 

Long, et al. 

[130] 
780.00 455.00 130.00 0.35 130.00 390.00 3.00 25.00 

 780.00 455.00 130.00 0.35 130.00 390.00 3.00 26.00 

 780.00 455.00 130.00 0.35 130.00 390.00 3.00 28.00 

 780.00 455.00 130.00 0.35 130.00 390.00 3.00 26.0 

 780.00 455.00 130.00 0.35 130.00 390.00 3.00 37.00 

 780.00 455.00 130.00 0.35 130.00 390.00 7.0 40.00 

 780.00 455.00 130.00 0.35 130.00 390.00 7.0 44.00 

 780.00 455.00 130.00 0.35 130.00 390.00 7.0 59.00 
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 780.00 455.00 130.00 0.35 130.00 390.00 7.0 44.00 

 780.00 455.00 130.00 0.35 130.00 390.00 7.0 50.00 

 780.00 455.00 130.00 0.35 130.00 390.00 28.0 48.00 

 780.00 455.00 130.00 0.35 130.00 390.00 28.0 51.00 

 780.00 455.00 130.00 0.35 130.00 390.00 28.0 57.00 

 780.00 455.00 130.00 0.35 130.00 390.00 28.0 52.5 

 780.00 455.00 130.00 0.35 130.00 390.00 28.0 57.5 

Xiao, et al. 

[131] 
444.00 210.00 41.4 0.15 870.00 96.6 7.00 31.00 

 444.00 231.37 41.4 0.20 870.00 96.6 7.00 22.5 

 444.00 254.09 41.4 0.22 818.00 96.6 7.00 21.00 

 444.00 275.46 41.4 0.30 818.00 96.6 7.00 17.50 

 444.00 210.00 41.4 0.15 870.00 96.6 28.00 47.50 

 444.00 231.37 41.4 0.20 870.00 96.6 28.00 32.50 

 444.00 254.09 41.4 0.22 818.00 96.6 28.00 30.00 

 444.00 275.46 41.4 0.30 818.00 96.6 28.00 24.00 

Kaszynska, et 

al. [132] 
588.00 232.00 84.00 0.23 989.00 168.00 0.41 17.00 

 588.00 232.00 84.00 0.19 1233.00 168.00 0.41 16.00 

 840.00 232.00 0.00 0.21 1047.00 0.00 0.41 16.5 

 840.00 232.00 0.00 0.05 1304.00 0.00 0.41 16.00 

 448.00 179.2 64.00 0.34 1258.00 128.00 0.41 8.00 

 448.00 179.2 64.00 0.40 1568.00 128.00 0.41 5.00 

 640.00 179.2 0.00 0.32 1302.00 0.00 0.41 7.00 

 640.00 179.2 0.00 0.28 1623.00 0.00 0.41 7.5 

 588.00 232.00 84.00 0.23 989.00 168.00 1.00 42.00 

 588.00 232.00 84.00 0.19 1233.00 168.00 1.00 52.00 

 840.00 232.00 0.00 0.21 1047.00 0.00 1.00 38.00 

 840.00 232.00 0.00 0.05 1304.00 0.00 1.00 37.00 

 448.00 179.2 64.00 0.34 1258.00 128.00 1.00 36.00 

 448.00 179.2 64.00 0.40 1568.00 128.00 1.00 30.00 

 640.00 179.2 0.00 0.32 1302.00 0.00 1.00 28.00 

 640.00 179.2 0.00 0.28 1623.00 0.00 1.00 38.00 

 588.00 232.00 84.00 0.23 989.00 168.00 3.00 62.00 

 588.00 232.00 84.00 0.19 1233.00 168.00 3.00 76.00 

 840.00 232.00 0.00 0.21 1047.00 0.00 3.00 51.00 

 840.00 232.00 0.00 0.05 1304.00 0.00 3.00 62.00 

 448.00 179.2 64.00 0.34 1258.00 128.00 3.00 47.00 

 448.00 179.2 64.00 0.40 1568.00 128.00 3.00 43.00 

 640.00 179.2 0.00 0.32 1302.00 0.00 3.00 43.00 

 640.00 179.2 0.00 0.28 1623.00 0.00 3.00 44.00 

 588.00 232.00 84.00 0.23 989.00 168.00 7.00 77.00 
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 588.00 232.00 84.00 0.19 1233.00 168.00 7.00 90.00 

 840.00 232.00 0.00 0.21 1047.00 0.00 7.00 68.00 

 840.00 232.00 0.00 0.05 1304.00 0.00 7.00 77.00 

 448.00 179.2 64.00 0.34 1258.00 128.00 7.00 58.00 

 448.00 179.2 64.00 0.40 1568.00 128.00 7.00 56.00 

 640.00 179.2 0.00 0.32 1302.00 0.00 7.00 55.00 

 640.00 179.2 0.00 0.28 1623.00 0.00 7.00 53.00 

 588.00 232.00 84.00 0.23 989.00 168.00 28.00 100.00 

 588.00 232.00 84.00 0.19 1233.00 168.00 28.00 101.00 

 840.00 232.00 0.00 0.21 1047.00 0.00 28.00 95.00 

 840.00 232.00 0.00 0.05 1304.00 0.00 28.00 93.00 

 448.00 179.2 64.00 0.34 1258.00 128.00 28.00 79.00 

 448.00 179.2 64.00 0.40 1568.00 128.00 28.00 72.00 

 640.00 179.2 0.00 0.32 1302.00 0.00 28.00 62.00 

 640.00 179.2 0.00 0.28 1623.00 0.00 28.00 58.00 

Yu, et al. 

[133] 
309.00 321.00 345.00 0.17 345.00 1026.00 1.00 15.00 

 309.00 321.00 345.00 0.17 345.00 1026.00 3.00 22.00 

 309.00 321.00 345.00 0.17 345.00 1026.00 7.00 28.00 

 309.00 321.00 345.00 0.17 345.00 1026.00 28.00 31.00 

Pham, et al. 

[134] 
483.00 182.00 268.00 0 1074.00 0 28.00 88.00 

Federowicz, 

et al. [135] 
580.00 200.00 83.00 2.17 1234.00 166.00 1.00 35.14 

 580.00 189.00 83.00 2.17 1234.00 166.00 1.00 27.70 

 580.00 177.00 83.00 2.17 1234.00 166.00 1.00 23.59 

 580.00 200.00 83.00 2.17 1234.00 166.00 7.00 71.81 

 580.00 189.00 83.00 2.17 1234.00 166.00 7.00 68.02 

 580.00 177.00 83.00 2.17 1234.00 166.00 7.00 59.64 

 580.00 200.00 83.00 2.17 1234.00 166.00 14.00 79.47 

 580.00 189.00 83.00 2.17 1234.00 166.00 14.00 77.29 

 580.00 177.00 83.00 2.17 1234.00 166.00 14.00 72.60 

 580.00 200.00 83.00 2.17 1234.00 166.00 221.00 81.36 

 580.00 189.00 83.00 2.17 1234.00 166.00 21.00 84.06 

 580.00 177.00 83.00 2.17 1234.00 166.00 21.00 79.06 

 580.00 200.00 83.00 2.17 1234.00 166.00 28.00 84.61 

 580.00 189.00 83.00 2.17 1234.00 166.00 28.00 88.23 

 580.00 177.00 83.00 2.17 1234.00 166.00 28.00 84.90 

Chi, et al. 

[136] 
400.00 168.00 212.00 0.16 80.00 58.80 28.00 18.50 

Appendix B 722 

The coding script will be provided upon the publication of this paper.  723 
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