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Abstract 12 

Fire-induced spalling of concrete continues to be an intriguing and intricate research problem. A 13 

deep dive into the open literature highlights the alarming discrepancy and inconsistency of existing 14 

theories, as well as the complexity of predicting spalling. This brings new challenges to creating 15 

fire-safe concretes and primes an opportunity to explore modern methods of investigation to tackle 16 

the spalling phenomenon. Thus, this paper leverages the latest advancements in eXplainable 17 

Artificial Intelligence (XAI) to vet existing theories on fire-induced spalling and to discover 18 

solutions/heuristics to predict spalling of concrete mixtures. The developed heuristics are in the 19 

form of graphs and nomograms. The proposed solutions allow interested researchers and engineers 20 

to graphically identify the propensity of a given concrete mixture to spalling directly and with ease. 21 

For example, we report that concrete mixtures with a combination of moderate water/binder ratio 22 

(of about 0.3), low heating rate (less than 2.5ºC/min), moderate rise in temperature (less than 23 

500ºC), and have moisture content (less than 3%) are expected to be less prone to spalling. Further, 24 

findings from this research showcase the potential for developing simple (i.e., one-shot) and 25 

graphical (coding-free and formula-free) XAI-based solutions and web applications to address 26 

decades-long problems in the area of concrete research.  27 

Keywords: Explainable Artificial Intelligence, Fire, Concrete, Spalling, Nomogram. 28 

1.0 Introduction 29 

Concrete is one of the most widely used construction materials. A prime quality of concrete lies 30 

within its inert material properties that often lead to favorable performance at elevated 31 

temperatures [1,2]. Nonetheless, it is common for concrete to undergo varying degrees of damage 32 

under fire conditions. Such damage can be attributed to thermo-chemical-mechanical degradations 33 

triggered by the rise in temperature [3]. The severity of the noted changes is governed by the 34 

multitude and proportions of raws (i.e., aggregates, sand, water, admixtures, etc.) making up the 35 

concrete mixture and fire characteristics, to name a few. For example, each raw material responds 36 

differently to the rise in temperature, and the interaction of these materials also reacts uniquely to 37 

the same temperature rise and heating rate [4]. These processes can trigger fire-induced spalling.  38 
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The spalling phenomenon is often defined as the disintegration/flaking of concrete chunks from 39 

the sides or surfaces of sections or members [5]. Spalling can occur in a mild or explosive nature. 40 

The degree at which spalling takes place can be a function of a variety of conditions (heating rate, 41 

maximum temperature, etc.) as well as mixture properties (water content, types of raws, etc.), 42 

among other factors. As one expects, the breakout of concrete pieces under fire conditions can lead 43 

to: 1) a reduction in the size (i.e., cross-section) of the element, 2) directly exposing internal 44 

reinforcements (namely: steel reinforcement, prestressing strands, or fiber-reinforced polymer 45 

composites) and inner layers of concrete to fire, and 3) flame propagation through cracks in barrier 46 

elements (such as walls, and slabs). The combined effect of the above three actions implies that 47 

spalling can accelerate damage and failure in spalling-prone concrete structures [6,7]. It is also 48 

noteworthy to mention that the adverse effect of spalling can have a compound effect on the 49 

geometric features of a concrete element (i.e., at the mechanical level and the thermal 50 

propagation)1. 51 

Notable and recent works have reported that traditional and modern concretes (such as those of 52 

high strength and/or ultra high-strength characteristics) can be prone to spalling [7–11]. Spalling 53 

amplifies in modern concretes due to the complex chemicals/additives involved in preparing such 54 

mixtures and their resulting denser microstructure [12,13]. Holistically, fire-induced spalling can 55 

be attributed to three temperature-dependent/temperature-triggered mechanisms: 1) rise in pore 56 

vapor pressure, 2) generated thermal stresses, and 3) combined pore pressure and thermal stresses 57 

[10]. Spalling could also be classified into three different groups depending on its occurrence. For 58 

instance, spalling could occur during the early-stage (220-230°C), mid-stage (430-660°C), and 59 

late-stage (above 700°C) of fires. Please refer to [3,4] for a more thorough discussion on spalling 60 

mechanisms. 61 

While the literature on fire-induced spalling is rich, as noted by the above-cited works and others 62 

[14–19], we still lack a fundamental and consistent testing procedure to predict if a concrete 63 

mixture is prone to spalling. In parallel, we also lack a consistent computational approach to predict 64 

if spalling will occur or not. This could be partly attributed to the 1) complexity in testing for 65 

spalling, 2) the variety of existing concrete mixtures, 3) the discrepancy in proposed test 66 

methodologies, and 4) the difficulty of repeating published results2.  67 

In parallel, many of the existing codal provisions remain impartial to the problem of spalling and 68 

provide general recommendations intended for this phenomenon [20,21]. These provisions often 69 

assume that spalling does not occur or, if it does, to be of a negligible impact. This assumption 70 

jeopardizes the applicability of established requirements in the event of spalling (i.e., tabulated 71 

data for assigning fire resistance rating of concrete members, etc.). The surveyed literature above 72 

 
1 We thank Reviewer no. 2 for pointing out this compound effect.  
2
 It is worth acknowledging the impressive work led by RILEM on this front. 
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reminds us of how predicting spalling can be a hectic process. These complications, along with 73 

others, have also been echoed by our colleagues [22–26]. 74 

To overcome the limitations of fire testing or fire-based simulations in capturing the spalling 75 

phenomenon, the rise of big data and artificial intelligence (AI) provides an attractive approach 76 

that could be able to tackle this phenomenon. In this frontier, emphasis is placed on creating AI 77 

models capable of analyzing observations from fire tests to capture possible patterns of spalling. 78 

The core hypothesis herein is that it could be possible to identify commonalities in which concrete 79 

spalls through a data-driven analysis instead of a traditional analysis. While such an approach may 80 

not fully unveil the mechanisms of how spalling occurs, it can still provide us with 1) new 81 

knowledge that could help us arrive at such mechanisms or 2) rules of thumb (heuristics) that can 82 

come in handy to develop timely solutions [27]. These two possibilities are the motivation behind 83 

this work.  84 

Although serious efforts aimed at integrating AI into our domain are relatively new, the open 85 

literature documents early works that explored AI as a means to predict spalling. For instance, 86 

Uysal and Tanyildizi [28] and McKinney and Ali [29] are perhaps some of the earliest works that 87 

tackled the spalling problem through AI. More recently, the use of modern algorithms and 88 

techniques has also been tried by our research group [5,12,29–31] and colleagues [32–34]. In 89 

hindsight, these recent studies examine the vulnerability of concrete elements or concrete mixes 90 

to spalling via investigating the influence of elemental features (such as geometrical, materials, 91 

and loading properties of load bearing members) or concrete mixtures (e.g., proportions of 92 

aggregates, sand, binders, etc.). 93 

Much of the cited works on the AI front, except [35], applied blackbox AI. In such AI, the logic 94 

and rationale behind models’ predictions are opaque. In other words, the user does not know how 95 

and why a model arrives at a specific prediction nor how the model ties the inputs (features) to the 96 

output (phenomenon) in question. As one can expect, blackbox models resemble a crude data-97 

driven approach where the data and model architecture dictate the resulting predictions with little 98 

physics-informed knowledge on such a procedure. While such an approach can be useful for 99 

developing practical data-driven solutions, it may remain limited to unlocking the spalling 100 

mechanism(s).  101 

In pursuit of more transparent AI, recent advances have led to producing AI models that are 102 

eXplainable (and hence the term XAI) [36,37]. In XAI, each model can demonstrate how the input 103 

features were forged into arriving at a prediction and which feature(s) govern the predictivity of 104 

the model. Through XAI, while still confined within the data-driven realm, a user can arrive at 105 

valuable insights into how the model has utilized the data (e.g., observations from fire tests on 106 

spalling) to arrive at accurate predictions3. These insights can then be leveraged to develop possible 107 

rules of thumb to address our problems. It is also likely that the same insights can be directed to 108 

 
3
 Please refer to our philosophical discussion on AI and XAI [92].  
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identify directions of high merit in research and future experiments – see a relevant example 109 

pertaining to the COVID-19 pandemic [38].  110 

In lieu of attaining insights from XAI, one can also derive graphical solutions (heuristics) for our 111 

problems. Such heuristics can be formed from XAI insights or a traditional AI analysis through 112 

nomograms4; wherein the relationship between the inputs is obtained (explicitly by XAI, or 113 

implicitly by AI), and then these relationships are visually represented within a nomogram. The 114 

goal of nomograms is to accelerate routine calculations often belonging to complex and iterative 115 

problems. Most nomograms encompass n scales, each representing one variable in a given or 116 

considered phenomenon. Thus, when the values of n-1 variables are obtained, a user can 117 

graphically arrive at the last unknown variable (often the dependent variable or outcome). More 118 

specifically, a nomogram can be directly used to predict the problem on hand (i.e., the occurrence 119 

of spalling) without requiring a lengthy/iterative procedure or re-running an AI/XAI analysis. 120 

Interested readers are advised to review the following works for an in-depth discussion on 121 

nomography [39–41].  122 

This study aims to chart a path to discovering graphical heuristics and nomograms to predict fire-123 

induced concrete spalling through XAI and AI. In this quest, 293 observations from fire tests were 124 

collected from the open literature to investigate the phenomenon of fire-induced spalling in 125 

concrete. Two approaches are used to analyze this data, through XAI models (where explainability 126 

is arrived at through the SHAP method [42] and partial dependence plots [43]) and via a nomogram 127 

obtained from an AI-based analysis. Our findings indicate that insights from XAI and AI-based 128 

nomograms can yield highly accurate and robust predictions of fire-induced spalling of concrete.  129 

2.0 Data Collection and Methodology 130 

2.1 Dataset development and statistical details 131 

A database containing 293 laboratory samples was collected from the open literature [32–34,44–132 

66]. This 293 data point sample contains 11 independent variables and one dependent variable 133 

(output; classified as spalling/no spalling). The input variables include (water/binder ratio, silica 134 

fume/binder ratio, fly ash/binder ratio, GGBS5/binder ratio, fine aggregate/binder ratio, coarse 135 

aggregate/binder ratio, moisture content, heating rate, maximum exposure temperature, maximum 136 

aggregate size, and the characteristic length (or distance)6). These inputs are used to classify and 137 

predict the occurrence of spalling in concrete as a function of the mixture proportions. It is worth 138 

noting that raw proportions were kept as a ratio of the binder for simplicity and consistency.  139 

 
4
 A nomogram, also called nomograph or alignment chart, is a two-dimensional graphical calculator invented in the 

19th century by the French engineer Philbert d'Ocagne to represent mathematical expressions or laws. Nomograms 

have been heavily utilized in engineering and medical problems [93–100]. 
5 GGBS: Ground granulated blast-furnace slag. 
6
 Characteristic length is defined by [33] as the distance of shortest escape route of vapor from the specimen centroid 

to the specimen surface. 
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Table 1 shows a statistical analysis of the dataset. As one can be seen, the database has a balanced 140 

and healthy range of all the identified variables. The result of a Pearson correlation analysis (which 141 

examines the linear relationship between the features and features and output) is also listed in 142 

Table 1. This correlation matrix shows that there is a positive linear correlation between H, M, D, 143 

T, Sf/b, Agg, G/b, and the propensity to spalling, and a negative correlation between the other 144 

features and spalling. Overall, the calculated linear correlation seems to vary between weak and 145 

mediocre, with the largest correlation arising between T and spalling propensity.  146 

To compliment the Pearson correlation analysis, the Spearman and mutual information analyses 147 

are also presented. The former examines the monotonic relationship between variables, while the 148 

latter measures the reduction of uncertainty in one variable after observing another variable. It is 149 

clear that there is a good convergence between the Person and Spearman correlations. On the other 150 

hand, the mutual information analysis shows minor information exchange between the propensity 151 

of spalling and mixture components. We suspect that the actual relations between the features to 152 

be of a nonlinear form – as will be seen in a later section. 153 
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Table 1 Statistical details of the database as well as the correlation matrix 154 

Input variables Mean Median 
Standard 

Deviation 
Minimum Maximum Skewness 

Water/binder (W/b) 0.37 0.33 0.12 0.19 0.61 0.42 

Coarse aggregate/binder (Ca/b) 1.73 1.77 0.90 0.00 3.95 0.10 

Fine aggregate/binder ratio (Fa/b) 1.65 1.51 0.65 0.45 3.38 0.79 

Heating rate (H, °C/min) 28.55 5.00 42.02 0.25 240 1.78 

Moisture content of concrete (M) 0.03 0.04 0.020 0.00 0.07 -0.38 

Characteristic distance of the concrete (D) 61.91 50.00 37.60 20.00 200.00 2.08 

Maximum exposure temperature (Tmax, °C) 568.20 600.00 246.20 100.00 1200.00 0.22 

Silica fume/binder (Sf/b) 0.03 0.00 0.06 0.00 0.20 1.66 

Maximum size of aggregate (Sa) 12.76 13.00 6.60 0.12 32.00 0.18 

GGBS/binder (G/b) 0.04 0.00 0.10 0.00 0.45 2.38 

Fly ash/binder (F/b) 0.02 0.00 0.07 0.00 0.54 3.49 

   

Pearson correlation Spearman correlation Mutual information 
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Fig. 1 Details of the compiled database156 
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2.2 Details of Algorithms and Approach 157 

This section outlines the proposed approach. First, we discuss the XAI algorithms used to arrive 158 

at graphical heuristics, and then we outline the procedure to develop AI-based nomograms. 159 

2.2.1 XAI Algorithms and Methodology 160 

Three algorithms are used herein. These include the XGBoost, Light Gradient Boosting Machine 161 

(LGBM), and Keras Slim Residual Neural Network (KSRNN). Each algorithm is briefly described 162 

herein as thorough discussions, and codes can be found in their original sources.  163 

The XGboost is a tree-like algorithm that was first published by Chen and Guestrin [67] (and the 164 

code of the used XGBoost can be found online at [68,69]). This algorithm has a weighted quantile 165 

approximation function that determines split candidates in a tree and the sparsity-aware split 166 

finding. The XGboost uses a pre-sorted algorithm and a histogram-based algorithm for computing 167 

the best split. The devised algorithm was tweaked with the following settings: learning rate = 0.05, 168 

maximum tree depth = 3.0, minimum split loss = 0.01, subsample feature = 1.0, and number of 169 

estimators = 500.  170 

The LGBM algorithm was developed and published by Microsoft [70]. This algorithm adopts two 171 

techniques, namely: gradient-based one-side sampling (to identify the most informative 172 

observations) and exclusive feature bundling (to group features in a near-lossless way). The LGBT 173 

algorithm can be found at [71] and tweaked herein with the following settings: learning rate = 0.01, 174 

maximum depth = “none”, and the number of estimators = 500.  175 

Keras is an open library for developing neural networks [72] and can be readily found at [73]. In 176 

a slim residual network, only one hidden layer exists with a direct connection linking data points 177 

to the outputs. In the used KSRNN, default settings of a learning rate of 0.01, along with a Prelu 178 

and Sigmoid as activation functions for the hidden and output layers, Adam optimizer, batch size 179 

= 5.0, and one hidden layer of 64 units were used. 180 

Each of the above algorithms was applied individually to the compiled database to establish a 181 

comparative study. The training process for each algorithm begins with randomly shuffling and 182 

splitting the database into three sets7 (T: training, V: validation, and S: testing, where the T set is 183 

the largest). Each algorithm is first trained on the T set, validated against the V set, and 184 

independently tested against the S set. In addition to the above procedure, a k-fold cross-validation 185 

procedure is also applied. In such a procedure, the T set is randomly split up into k groups, wherein 186 

the model is trained using k-1 sets and then validated on the last k set. This procedure is repeated 187 

k times until each unique set has been used as the validation set. k in this study was taken as 10. 188 

During every stage, each algorithm is examined via performance metrics. Since this work explores 189 

the spalling phenomenon (as if a concrete mixture spalls or not), classification metrics will be 190 

 
7
 For a fair comparison, these sets were kept identical when applied to each algorithm.  
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adopted. Given the unique derivation of metrics, these constructs often have advantages and 191 

disadvantages; thus, it is best to utilize a series of independent metrics [74]. Three metrics are used: 192 

Area under the ROC curve (AUC), Log Loss Error (LLE), and the confusion matrix. The former 193 

two metrics are listed in Table 2, and the latter describes a matrix that compares the number of 194 

correct predictions to those of the poorly predicted instances with values in the main diagonal 195 

depicting correct predictions.  196 

Table 2 List of selected performance metrics.  197 

Metric Expression 

Area under the ROC 

curve (AUC) 

𝐴𝑈𝐶 = ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖)

𝑁−1

𝑖=1

 

 

where, FP: number of false positives, TP: number of true positives. 

 

Note: values approaching unity imply high predictivity.  

Log Loss Error (LLE) 

𝐿𝐿𝐸 = − ∑

𝑀

𝑐=1

𝐴𝑖𝑙𝑜𝑔𝑃 

 

where, M:  number of classes, c: class label, y: binary indicator (0 or 1) 

if c is the correct classification for a given observation. 

 

Note: values approaching zero imply high predictivity. LLE penalizes for 

being confident in the wrong prediction. 

Confusion Matrix 

True Positive Rate (TPR) = Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

True Negative Rate (TNR) = Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Accuracy (ACC) = 
𝑇𝑃+𝑇𝑁

 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

where, TN: number of true negatives), FN: number of false negatives. 

A: actual measurements, P: predictions, n: number of data points. 198 

In a confusion matrix, three main elements are of significance, namely; True Positive Rate (TPR) 199 

or Sensitivity, True Negative Rate (TNR) or Specificity, and Accuracy (ACC). The TPR and TNR 200 

metrics define the actual positive cases correctly identified (i.e., correctly predicting spalling for a 201 

mixture that has spalled in tests) and the actual negative cases correctly identified, respectively. 202 

On the other hand, the ACC presents a ratio of the correct predictions to the total number of 203 

samples, respectively. All the metrics formulas are described in Table 2 [74]. 204 

Once each algorithm is properly validated and tested, then explainability tools are augmented to 205 

arrive at insights into the spalling phenomenon. More specifically, the SHAP method [42] is first 206 
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applied to rank the importance of the used features (i.e., identify those features with the largest 207 

influence upon predictions from each model (e.g., identify the highly used features). Then, a partial 208 

dependence plot (PDP) is constructed for each XAI model. A PDP displays the marginal effect of 209 

an individual feature while holding other features constant on model predictions [43]. A more 210 

thorough discussion on the fundamentals of explainability measures can be found elsewhere 211 

[42,43] as well as in our recent work [37], which is tailored for engineering applications, and [35], 212 

which tackled the fire response of concrete columns.  213 

2.2.2 Development of Nomogram 214 

The selected procedure to develop a nomogram requires utilizing the logistic regression (LR) 215 

algorithm. LR, formulated by David Cox [75], is one of the most widely used supervised learning 216 

algorithms for binary classification problems. The LR algorithm primes the Sigmoid function. The 217 

used LR algorithm was trained and validated using the outlined procedure in the previous section. 218 

The R programming language (version 4.1.2) was heavily used to develop the proposed 219 

nomogram.  220 

Once the LR algorithm is fully validated, the spalling occurrence is fitted through the following 221 

algebraic representation (Eq. 1). This representation denotes that the occurrence of spalling is 222 

calculated via the identified features of the compiled database. Then, the probability of spalling 223 

occurrence is calculated using a logistic, Sigmoid, equation (Eq. 2). Equation 2 returns values close 224 

to zero or unity if the examined concrete mixture is prone to spall, or not inclined to spall, 225 

respectively. More specifically, the rms (regression modeling strategy) R package [76] and the 226 

sigmoid function in the R Toolbox are used to develop the nomogram and arrive at the probability 227 

of spalling.  228 

𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔 ~ 𝑊/𝑏 +  𝐶𝑎/𝑏 +  𝐹𝑎/𝑏 +  𝐻 +  𝑀 +  𝐷 +  𝑇 +  𝑆𝑓/𝑏 +  𝑆𝑎 +  𝐺/𝑏 +  𝐹/𝑏   229 

            Eq. 1 230 

𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑡𝑜 𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔 =
1  

1+𝑒𝑥𝑝−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯ )       Eq. 2 231 

Where, β0, β1, etc., are coefficients8 derived during the training process, and X1, X2, etc., are the 232 

features identified in our database (and those listed in Eq. 1). Both the developed nomogram and 233 

an example of how to properly apply this nomogram are provided in the following section and 234 

Appendix A. In addition, Appendix B and Appendix C outline the codes used to create the 235 

proposed nomogram and web application with a graphical user interface that does not require 236 

coding experience to operate, respectively.   237 

 
8Spalling=-9.6005W/b+ 0.3444Ca/b+1.2066Fa/b+0.0089H+40.3826M+0.0224D+0.0070T+14.2181Sf/b-
0.1055Sa+4.2498G/b+0.3490F/b-6.1001 
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3.0 Findings and Discussion 238 

3.1 XAI Insights (heuristics) 239 

We start our discussion by showcasing the results from the XAI analysis. First, we report the 240 

performance of the XAI models and then dive into the derived heuristics.  241 

The performance of the XGboost, LGBM, and KSRNN is shown in Table 3 during the training, 242 

validation, and testing stages. As one can see, the three models have comparable performance, 243 

with the XGBoost being a clear favorite since it scores the highest in the majority of performance 244 

metrics listed in Table 3. These results, as obtained from different metrics, further our confidence 245 

in the developed models.  246 

Table 3 Performance of the developed models for training/validation/testing regimes.  247 

Metric XGboost LGBM KSRNN 

AUC 0.994 0.968 0.967 0.954 0.949 0.937 0.950 0.930 0.899 

LLE 0.108 0.255 0.271 0.311 0.298 0.358 0.331 0.341 0.425 

Sensitivity 0.944 0.907 1.000 0.944 0.779 0.818 0.889 0.837 0.955 

Specificity 1.000 0.926 0.861 1.000 0.953 0.940 1.000 0.872 0.806 

Accuracy 0.978 0.919 0.914 0.978 0.889 0.897 0.957 0.859 0.862 

 248 

3.1.1 Feature Importance 249 

The feature importance in each model was calculated using the SHAP method and is plotted for 250 

all features in Fig. 2. As one can see, the three models agree for the most part on the importance 251 

of the individual features (with some outliers such as Sf/b and F/b possibly due to the algorithmic 252 

nature of KSRNN). Furthermore, four features are noted to have the highest importance (i.e., 253 

ranging between 0.5-1.0) across all the algorithms. These include T, W/b, H, and M and seem to 254 

resemble the same features holistically identified by notable works and existing theories, thereby 255 

mirroring further confidence in the developed models [4,7]. The importance of features other than 256 

those identified above varies between minor and negligible. 257 

https://doi.org/10.1007/s10694-022-01290-7
https://doi.org/10.1007/s10694-022-01290-7


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s10694-022-01290-7. 

Please cite this paper as:   

Tapeh, A., Naser, M.Z. (2022). Discovering Graphical Heuristics on Fire-induced Spalling of Concrete through 

eXplainable Artificial Intelligence. Fire Technology. https://doi.org/10.1007/s10694-022-01290-7.   

13 

 

 258 
Fig. 2 Feature importance 259 

3.1.2 Partial Dependence Plots (PDP) 260 

Now that the importance of each feature has been established, it is time to develop partial 261 

dependence plots (PDP). Figure 3 depicts the PDP for each feature as generated by each of the 262 

three algorithms. A look into Fig. 3 shows that there is a convergence between all PDP; wherein 263 

general trends are mirrored well across the three models.  264 

We keep our primary discussion to the aforenoted four features of the highest importance (i.e., T, 265 

W/b, H, and M). It is clear that higher temperatures are associated with a larger propensity to 266 

spalling. However, temperatures beyond 600ºC do not seem to affect the tendency to spall by 267 

much, wherein there is a high propensity to spalling (also agrees with [77–79]). When it comes to 268 

W/b, lower ratios (< 0.3) seem to have a high tendency to spalling. This may be evident in concretes 269 

of higher strength (HSC and UHPC) – also reported by [80]. However, the same PDP also shows 270 

that W/b of 0.45 can have higher spalling as well9. Similarly, higher values of H10 (larger than 271 

2.5ºC/min) and M (larger than 3%11) are associated with higher spalling frequency.  272 

 
9
This anomaly was also reported by [101]. 

10
Noumowe et al. [82] and Klingsch [80] reported the possible occurrence of spalling at relatively low heating rates 

of 0.5°C/min. Hertz [14] also showed that “dense” concrete may spall at heating rate of 1°C/min. 
11

A similar observation was made by [14,86], and in fact, the recommended value of 3% is proposed by Eurocode 2 

[87]. 
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On another front, the maximum size of aggregate seems to have a distinct response to spalling 273 

(notably for smaller aggregate sizes12). Finally, features such as F/b, Sf/B, and G/b do not seem to 274 

adversely affect the spalling tendency of concrete mixtures13.  275 

When combined, the resulting PDP can be thought of as heuristics to identify if a specific concrete 276 

mixture is likely to spall or not under fire. These heuristics are shown at the bottom of Fig. 3 as 277 

devised from the three algorithms. The same heuristics show that concrete mixtures with relatively 278 

moderate W/b ratio and low T, H, and M are expected to be less prone to spalling than other 279 

mixtures. 280 

 
12

A similar observation was made by [51,84]. 
13

For transparency, we speculate that a more comprehensive database to contain varying observations of these features 

(as shown in Fig. 1) alter change this finding. Thus, we are proponents of frequently updating the proposed solutions 

(on a rotating basis of 2-5 years).  
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Combined DPD from XGBoost Combined DPD from LGBM Combined DPD from KSRNN 

Fig. 3 Heuristics from the XAI insights [Note: The vertical axis represents the spalling tendency where zero implies less tendency to spalling unity implies a high tendency to spalling. For illustrative purposes, 282 

the vertical axis was capped at 0.6, except for the bottom three PDP]283 
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3.2 Nomogram 284 

Mirroring the previous section, we start by validating the LR model, which achieved an AUC of 285 

92% and 100% in training and testing, respectively. In addition, the model achieved 0.910, 1.000, 286 

and 0.961 in sensitivity, specificity, accuracy, respectively. As one can see, the model has a 287 

favorable performance.  288 

3.2.1 Development of Nomogram 289 

The developed nomogram can be seen in Fig. 4 (displayed on the next page for legibility). This 290 

nomogram assigns the propensity of a given concrete mixture to spalling based on attaining a 291 

cumulative number of points (ranging from 0-100). This cumulative number of points is the 292 

arithmetic sum of the assigned points to each independent feature and is also used to estimate the 293 

probability of spalling. As one can see, given that each feature is scaled independently, the scale 294 

of the points pertaining to each feature must also be properly scaled. The nomogram shows that 295 

concrete mixtures with a total number of points ranging between 133-251 might experience 296 

spalling with a varying degree of certainty. 297 

For example, when the total points for a given mixture is less than 133, this mixture is not 298 

vulnerable to spalling. On the other hand, when the total points for a given mixture is larger than 299 

193, then the concrete mixture is more expected to be vulnerable to spalling. Mixtures with a total 300 

number of points exceeding 251 are highly vulnerable to spalling. Thus, the range between 133-301 

193is a grey area where the expectation of spalling/no spalling of mixtures is heavily influenced 302 

by the combination of mixture proportions and heating conditions.  303 

In addition, a companion to the nomogram is Table 4, which lists all the features and their 304 

corresponding scaled points. Thus, rather than finding points from the nomogram, a user may refer 305 

to Table 6 to assess if the desired concrete mixture will spall or not. For completion, the reader is 306 

to note that a dedicated solved example is provided in Appendix A. Figure 5 depicts the expected 307 

probability of spalling occurrence as obtained from the LR model for our database (all 293 data 308 

points – not to be confused with the total number of points calculated from the nomogram).  309 
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 310 
Fig. 5 Probability of spalling occurs per the LR model [Note: Index represents each of the 311 

observations listed in our database]312 
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 313 
Fig. 4 The developed nomogram for predicting spalling in concrete mixtures 314 
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Table 5 Companion to the developed nomogram 315 
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*When the total points for a given mixture < 192 imply that spalling is not expected to take place, and when the total points for a given mixture > 206 imply that spalling is expected to occur.316 
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4.0 Do Insights from XAI Match our Domain Knowledge on Fire-induced Spalling? 317 

Recent, notable, and highly cited works on the fire-induced spalling front [3,10,14,80,81] converge 318 

on a few viewpoints: 1) the complexity of predicting spalling, 2) the discrepancy between existing 319 

theories, 3) inconsistency of reported results of tests, 4) poor/inexistence repeatability of published 320 

works and 5) the fact that concrete specimens of identical mixtures tested under identical 321 

conditions do not follow a consistent behavior (e.g., a specimen might spall where an identical 322 

specimen may not spall; thereby implying a highly random effect to accompany spalling). These 323 

facets further complicate our quest to unlock the spalling phenomenon and stretches the comfort 324 

zone of our pursuit to realizing deterministic solutions. The same facets are to be thought of as 325 

opportunities to motivate future works. 326 

It is, then, not surprising that the reported insights from the carried out XAI analysis may echo 327 

some of the existing findings in our open literature and at the same time, may contradict others (as 328 

evident in the discussion and footnotes shown in Sec. 3.1.2) – specifically with regard to the 329 

influence of W/b, T, and M, as well as H, on spalling.  330 

It is yet possible that our findings that match some of the cited works in this paper could be contrary 331 

to other published studies. For example, while Noumowe et al. [82], Klingsch [80] and Hertz [14] 332 

reported the occurrence of spalling at relatively low heating rates of 0.5-1.0°C/min (which deviates 333 

from our XAI findings that show the lower tendency to concrete to spall at such rates), others 334 

[80,83] have noted that spalling is unlikely to occur at such range. Similarly, our XAI analysis and 335 

[51,62,84] show that concretes with smaller aggregates are more vulnerable to spalling than those 336 

with larger aggregates, while [85] reports the opposite. On the moisture content, our analysis, as 337 

well as findings from [14,86], and Eurocode 2 [87], demonstrate that content of 3% leads to less 338 

propensity to spalling; others [50,88,89] have reported spalling for lower moisture content.  339 

In other words, it is unlikely to find agreement between all sources on the influence of one 340 

particular parameter with regard to spalling. Rather, there seems to be a general consensus as to 341 

how a particular parameter influences spalling, and our heuristics and nomogram appear to capture 342 

this consensus. 343 

We assume that the discrepancy between our analysis and that reported by other researchers could 344 

be due to differences between the concrete mixtures used in our database and those by the cited 345 

researchers (where exotic mixtures made of HSC and UHPC variants with unique 346 

fibers/admixtures were examined). In our database, the influence of steel or polypropylene fibers, 347 

as well as specifics of admixtures, presence of mechanical loading, and full heating history, were 348 

not considered. Building on the findings of [3,10,14,80], we believe that such features can 349 

influence model predictions to some extent. Thus, believe that a future study dedicated to exploring 350 

the combined influence of mixture proportions, mixture properties (i.e., compressive strength, 351 

etc.), size effect, and loading and heating conditions will shed more light on the spalling 352 

phenomenon.  353 

https://doi.org/10.1007/s10694-022-01290-7
https://doi.org/10.1007/s10694-022-01290-7


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s10694-022-01290-7. 

Please cite this paper as:   

Tapeh, A., Naser, M.Z. (2022). Discovering Graphical Heuristics on Fire-induced Spalling of Concrete through 

eXplainable Artificial Intelligence. Fire Technology. https://doi.org/10.1007/s10694-022-01290-7.   

23 

 

Therefore, it is worth reminding our readers that the developed heuristics and nomograms are 354 

designed to show the tendency of concrete mixtures to spall, and these solutions are not to be 355 

thought of as deterministic tools. Keeping the latter in mind will solidify the position and 356 

applicability of the developed and to-be-developed heuristics and nomogram. 357 

5.0 Conclusions  358 

Fire-induced spalling is a complex problem. This paper presents an XAI approach (where AI 359 

algorithms were augmented with explainability measures) to create heuristics and nomograms to 360 

provide engineers and designers with tools to predict the occurrence of spalling in concrete 361 

mixtures. In order to develop the proposed tools, a series of fire tests collected from 293 real 362 

observations were compiled and analyzed. The outcome of the presented XAI analysis showcases 363 

the ease and potential of developing one-shot AI-based solutions to complex structural fire 364 

engineering problems. In addition, the following points can be inferred from this study: 365 

● Insights from the XAI analysis seem to mirror our existing knowledge base and theories 366 

with regard to fire-induced spalling. It is then possible to use such insights to verify existing 367 

theories further and establish future research plans. 368 

● Four parameters were shown to be of the highest importance with regard to spalling, 369 

namely, maximum achieved temperature, water/binder ratio, heating rate, and moisture 370 

content.  371 

● Concrete mixtures with a combination of moderate water/binder ratio (of about 0.3), low 372 

heating rate (less than 2.5ºC/min), underwent high temperature (less than 500ºC), and have 373 

moisture content (less than 3%) are expected to be less prone to spalling. 374 

● There is a need to fully and maximally leverage AI systems in our domain. The expected 375 

outcome from such utilization may accelerate finding solutions to ongoing and persistent 376 

problems.  377 

Note 378 

We invite interested users of the developed heuristics and nomograms to extend, test, and report 379 

their findings to realize improved versions of such tools. 380 
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Appendix A 658 

This Appendix demonstrates an example for applying the developed nomogram. In this example, 659 

a concrete mixture tested by Ali et al. [51] and suffered from spalling was selected for analysis. 660 

The concrete mixture has the following features: 661 

▪ Water/binder ratio = 0.27 662 

▪ Coarse aggregate/binder ratio = 2.0 663 

▪ Fine aggregate/binder ratio = 1.049 664 

▪ Heating rate (°C/min) = 101 665 

▪ Moisture content = 0.049 666 

▪ Characteristic length of specimen (mm) = 100  667 

▪ Maximum exposure temperature (°C) = 1034 668 

▪ Silica fume/binder ratio = 0.0  669 

▪ Maximum aggregate size (mm) = 7.0 670 

▪ GGBS/binder ratio = 0.25 671 

▪ Fly ash/binder ratio = 0.0 672 

Using Nomogram:  673 

In this example, the cumulative score for all 11 features is equal to 267. By depicting on the 674 

probability axes, the rate is close to 0.995% (which is very close to unity and hence indicates that 675 

spalling occurs for the concrete mixture). 676 

Using Table: The same answer could have been arrived at through the supplementary table.  677 

Total points = 48+9+17+11+25+23+86+0+39+14+0 = 272 points > 0.999 which is << Unity → 678 

Spalling is expected. [Note: underlined values were interpolated].679 
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Appendix B 682 

This appendix outlines our procedure for developing monograms. 683 

The strategy for developing the proposed nomogram is enabled and adapted from the R-684 

documentation. Our database includes 293 different samples and 11 distinct features imported via 685 

the read.csv () function. Then, each feature is titled, and the dependent variable (i.e., outcome 686 

titled, SPALLING is converted into binary values (i.e., 0 and 1 for "not spalling" and "spalling"), 687 

respectively)). 688 

R code: 689 

> data=read.csv ('C: spalling.csv) 690 

>colnames(data)<-C('Water/binder(W/b)','Coarse-aggregate/binder(ca/b)', 691 

'Fine aggregate/binder(fa/b)','Heating rate(°C/min)','moisture content of 692 

concrete(M)','Characteristic 693 

Distance of the concrete(D)','maximum exposure temperature(T-max)','silica 694 

fume/binder(sf/b)','maximum size of 695 

aggregate(Sa)','GGBS/binder(G/b)','Flyash/binder(F/b)','SPALLING') 696 

>data [data$SPALLING==0,] $SPALLING<-"notspalling" 697 

>data [data$SPALLING==1,] $SPALLING<-"spalling" 698 

>data$SPALLING<-as.factor (data$SPALLING) 699 

Data partitioning is essential before developing and fitting ML models (in this instance, our logistic 700 

model). The binary outcome of the database (spalling and no spalling) was firstly separated from 701 

one another and the required portion of them (say, 70%, 80%, and 90% for the training set and 702 

corresponding 30%, 20%, and 10% for the testing set) created by the combination of the two first 703 

sections. 704 

R code: 705 

> N<-nrow (data) 706 

 data<-data[sample(1:N),] 707 

 data.spalling <- subset(data, SPALLING=='spalling') 708 

 data.notspalling <- subset(data, SPALLING=='notspalling') 709 

 data.spalling.train <-data.spalling[seq(nrow(data.spalling)*9/10),] 710 

 data.spalling.test <-data.spalling[(-seq(nrow(data.spalling)*9/10)),] 711 

 data.notspalling.train <-data.notspalling[seq(nrow(data.notspalling)*9/10),] 712 

 data.notspalling.test <-data.notspalling[(-seq(nrow(data.notspalling)*9/10)),] 713 

 train.set <- rbind (data.spalling.train,data.notspalling.train) 714 

 test.set <- rbind (data.spalling.test,data.notspalling.test) 715 

Now is the time to use the packages that encompass the required functions for fitting the regression 716 

model to develop the nomogram. The rms package is deployed to fit the regression into the dataset 717 

and draw the nomogram. In essence, we start by defining datadist () function to save the summary 718 

of predictor variable distribution. The aforenoted summaries in the datadist () function include 719 
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data statistics such as plotting range, values to adjust to, and entire ranges of the predictor variable. 720 

Then, the option () function reduces additional action to achieve any fitting information from 721 

source data. The logistic regression fitting is performed by lrm () function. The Nomogram () 722 

function converts the fitted logistic regression model lrm () into a nomogram. The logistic model 723 

in this study is "model.train.lrm," and the nomogram model is "nom." 724 

R code: 725 

> model.lrm.train<-lrm (SPALLING ~. , train.set) 726 

The first parameter in lrm () function shows that regression fitting is based on all 727 

independent variable in the problem (here 11 distinct variable). 728 

nom<-nomogram(model.lrm.train,fun=function(x)1/(1+exp(-x)),lp=FALSE, 729 

fun.at=c(0.001,.01,.05,seq(.3,.9,by=.8),.95,.99,.999), 730 

funlabel="Probability of spalling occurrence" 731 

After fitting the regression model, the fun () function, which is the sigmoid function, turns the 732 

linear regression into a logistic one. Also, the predicting axes in the nomogram can be scaled to 733 

accommodate different feature scales and probability range (taken as 0.001 to 0.999) using the 734 

fun.at () function. Finally, the prediction axes label will be named "Probability of Spalling 735 

occurrences" by applying the funlable () function. This axis shows the probability of spalling in a 736 

concrete mixture (when it is close to zero, it means that the concrete mixture is likely to spall, and 737 

the opposite when it is close to unity). In the last stage, the nomogram is plotted using the generic 738 

plot () function with the following parameters to ensure an eligible nomogram. 739 

R code: 740 

>plot(nom, label.every=0.5, 741 

   force.label=FALSE,  742 

              xfrac=0.3, cex.axis=0.7,cex.var =0.66 , col.grid=gray(c(0.8, 0.95)), 743 

              varname.label=FALSE, varname.label.sep='=', ia.space=0.2,  744 

              tck=4, tcl=0.35, lmgp=0.25, 745 

              points.label='Points', total.points.label='Total Points', 746 

             total.sep.page=FALSE, cap.labels=TRUE) 747 

Appendix C 748 

This appendix outlines the developed web app to provide designers and practitioners a more 749 

readily access to our approach to predicting spalling. 750 

Shiny is one of the R programming language packages that assist app developers in designing web-751 

app quickly and straight. This web app consists of two main sections: 1) User Interface and 2) 752 

Server. In the first section, different slide bar panels are defined to help the app accept all the input 753 

variables in the problem (say water/binder or Heating rate) that consist of some features, including 754 

minimum, maximum, and value. On the server part, the central segment for model prediction, the 755 
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same logistic coefficients derived from the LR are used (Please see Fig 6 to see the half main part 756 

of the framework app). 757 

 758 

Fig. 6 Demo App (Used to predict Spalling phenomena as a new graphical user interface) 759 

Web- app can be reached at: 760 

https://arashteymorigharahtapeh.shinyapps.io/noto/?_ga=2.59172333.1764480149.1650622370-761 

772174619.1645432204.  762 
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