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Abstract 7 

This paper presents a framework for integrating Explainable and Anomalous Machine Learning 8 

(EAML) into a digital twin to enable finetuning of mixtures as a mean to realize next-gen concretes 9 

with favorable performance. In this framework, both anomalous unsupervised and explainable 10 

supervised ML algorithms are joined to create a virtual assistant capable of exploring the influence 11 

of mixture materials and proportions on the required performance of concrete. This virtual assistant 12 

is not only trained to detect inherent vulnerabilities within mixtures but can also finetune such 13 

mixtures to overcome potential weaknesses – especially when concrete is expected to serve under 14 

extreme loading conditions. The proposed framework has been rigorously examined on three case 15 

studies to identify vulnerable mixtures to: 1) fire-induced spalling, 2) chloride penetration, and 3) 16 

failing to attain full design strength in job sites, using small and large datasets comprised from 17 

actual measurements. Results from our analysis show how the proposed framework was capable 18 

of identifying vulnerable concrete mixtures and of satisfying various performance metrics. While 19 

the proposed framework is designed to be algorithm-independent and hence can be scalable across 20 

multiple platforms, this work showcases the application of anomaly detecting and clustering 21 

algorithms, together with an ensemble of classifiers encompassing extreme and light gradient 22 

boosted trees (GBT), generalized additive models (GAM), and keras deep residual neural network 23 

(KDP).  24 

 25 

Keywords: Machine learning; Digital twin; Concrete; Explainability; Clustering.  26 

Introduction 27 

The digital twin is often defined as the creation of a digitalized and comprehensive representation 28 

of a physical system, service, or product that includes valuable information gained throughout all 29 

of its lifecycle phases [1,2]. Once employed, a digital twin is expected to replicate the essence of 30 

the product on hand, thereby enabling real-time exploration and examination using data obtained 31 

from manufacturers, or feedbacks/experiences of users. Tracing the service history of a product is 32 

expected to provide us with valuable insights into the behavior and response of such a product – 33 

most of which are often missing during the research and development (R&D) stage. Once captured, 34 

such insights can prove elemental to significantly improve future generations of such a product 35 

[3]. Despite the success of this concept across various domains (i.e., manufacturing [4], robotics 36 

[5], etc.), the open literature seems to lack efforts on this front with regards to concrete as a 37 

construction material as opposed to modeling the construction phases of concrete structures [6].  38 

A look into the use of concrete material reveals that concrete is used more than any other 39 

construction material globally, with a production rate reaching 10 billion tons (thus implying an 40 
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average of 1.2 tons for each member of the world’s population) [7]. This large production rate 41 

accounts for 5-8% of global carbon dioxide (CO2) emissions [8,9]. When dissected, the above 42 

infers two observations; 1) concrete is an attractive and wide-spread construction material and 43 

hence the amount of potential data available on concrete behavior is substantial, and 2) any 44 

improvements on this front will be valuable not only from a material performance point of view, 45 

but from an economic/environmental perspective as well [10,11]. This work argues that adopting 46 

a digital twin framework will enable us to realize improved concrete materials, which will translate 47 

to achieving sustainable and resilient concrete structures. This argument is built upon the notion 48 

that the behavior of structures is often governed by the response of its constituent materials to the 49 

surrounding environment [12,13].  50 

Revisiting point no. 1 above shows that while we do have a large amount of data on concrete 51 

materials, such data is highly nonlinear and multi-dimensional [14]. Thus, a question arises as to 52 

how to efficiently collect and analyze such data? Herein where utilizing novel analytics tools 53 

becomes handy. For example, the use of machine learning (ML) has proven effective in handling 54 

high-dimensional and nonlinear datasets and hence can also be used to examine data on concrete 55 

materials [15,16]. In fact, the past few years have noted how ML techniques can be successfully 56 

applied to predict properties of concrete with high confidence. For example, Chopra et al. [17] 57 

compared compressive strength predictions from three algorithms (e.g., decision tree, random 58 

forest, and neural networks) and reported high accuracy exceeding 95%. In addition, Young et al. 59 

[18] analyzed over 10,000 concrete mix designs used in job sites as a means to arrive at insights 60 

between the mixture design variables and the 28-day compressive strength. These researchers 61 

reported adequate performance with an average relative error of less than 10% using neural 62 

networks.  63 

In lieu of traditional ML, other works also applied advanced ML techniques. In one instance, 64 

Pazouki et al. [19] applied metaheuristics to estimate the compressive strength of self-compacting 65 

concretes. These researchers reported that metaheuristics produced higher prediction accuracy as 66 

compared to neural networks. Furthermore, a comprehensive examination was carried out by Chou 67 

et al. [20] to estimate the compressive strength of high-performance concrete on data collected 68 

from multiple nations. The main findings of Chou et al. [20] noted that ensemble learning 69 

techniques outperformed individual learning techniques in predicting strength property. In a 70 

parallel work, Yaseen et al. [21] applied extreme ML models (an improved version of neural 71 

networks) to evaluate the compressive strength of lightweight foamed concretes. Yaseen et al. [21] 72 

observed the merit and relatively high prediction capabilities of extreme ML techniques over 73 

traditional statistical methods. To a lesser degree, additional efforts also explored the use of 74 

advanced ML methods to examine the performance of concrete material under extreme conditions 75 

such as fire [22], and chloride penetration [23], among others [24–26].  76 

Two primary observations can be drawn from the above reviewed works. The first observation 77 

notes that these works utilized ML algorithms that fall under supervised learning methods. 78 

Supervised learning comprises the majority of ML and is particularly applied in problems where 79 

both inputs and a target variable are labeled and known [27]. For instance, supervised learning can 80 
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be applied when concrete mixture proportions are known and the strength associated with such 81 

mixture is also known. In this scenario, a ML algorithm can learn from the available data how to 82 

tie the inputs (e.g., mix proportions) to the target variable (i.e., strength property). This type of ML 83 

technique can be applied to two problem types; regression (when the target variable is a numeric 84 

value) and classification (when the target variable is a category, e.g., cracked/not cracked). The 85 

second observation notes that the above works, and by extension most works on property 86 

prediction of concrete, adopted Blackbox algorithms. Such algorithms have complex structures 87 

with inner workings that are intricate for a user to fathom. As such, users turn to be wary of such 88 

algorithms and may not trust their predictions – since they do not understand the justification 89 

behind model predictions. A move toward explainable ML where a model is capable of justifying 90 

its own predictions, is on the rise as it allows transparency and trust [28].   91 

While supervised learning is commonly used in our domain, another type of learning is referred to 92 

as unsupervised learning, and this can be adopted in scenarios where only the inputs are available 93 

without any corresponding outputs. In this case, a ML algorithm is applied to explore the 94 

underlying structure within data to understand the nature of the problem on hand. Unsupervised 95 

learning can be broadly grouped into clustering (grouping by behavior, i.e., concrete mixtures of 96 

silicious nature tend to be more susceptible to fire-induced spalling than others [29]), association 97 

(discover rules that describe large portions of the assembled data, i.e., high strength concrete 98 

mixtures have a denser microstructure and hence could be vulnerable to spalling once heated), and 99 

anomaly detection (identifies observations that deviate from a dataset's normal behavior) [30]. At 100 

the time of this manuscript, the open literature only contains a few works that leverage 101 

unsupervised ML in the domain of concrete materials [31,32]. Exploring the full potential of 102 

unsupervised ML in this domain is another motivation behind this work.  103 

In this pursuit, this paper aims to tie explainable and anomalous ML to realize a concrete digital 104 

twin that will allow users to finetune concrete mixture design on-demand, thereby negating issues 105 

during casting and deployment. This work is especially interested in identifying vulnerable 106 

mixtures to: 1) fire-induced spalling, 2) chloride penetration, and 3) irregularities in attaining 107 

design strength at job sites. To showcase the proposed framework, three case studies are 108 

undertaken using the following algorithms are used extreme and light gradient boosted trees 109 

(GBT), generalized additive models (GAM), and keras deep residual neural network (KDP), 110 

anomaly detecting, and k-means clustering algorithms. A complete examination of the 111 

performance of the proposed framework is provided in each case study.  112 

Rationale to Integrating EAML into Digital Twin   113 

This section covers the rationale for the proposed framework by adopting EAML into a digital 114 

twin from the lens of concrete materials.  115 

Proposed framework 116 

Figure 1 outlines a flowchart of the proposed framework. The proposed framework integrates two 117 

types of commonly used ML, unsupervised and supervised learning. This framework starts by 118 

examining a dataset on concrete mixtures via anomaly detection algorithms to identify and treat 119 
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outliers. Outliers are anomalous observations that can be tied to a level of problem (or perhaps a 120 

measurement glitch), and hence such observations are to be correctly identified. Once such 121 

observations are identified, these can then be treated via a variety of means such as removal or 122 

substitution (e.g., with the average value of all observations, etc.), and can also be further analyzed 123 

to examine the inherent source of their outlierness (i.e., by examining equipment for re-124 

calibration). One should also note that traditional statistical methods can be used to detect outliers 125 

[33]. However, recent works have noted the advantages of ML over such methods as they do not 126 

typically require numeric monotype attributes and can handle both multi-dimensional data and of 127 

symbolic attributes [34]. Given the stated motivation behind this work, we will be relying on ML 128 

for outlier detection in the examined three case studies1. 129 

 130 

Fig. 1 Flowchart of the proposed framework  131 

 132 

Once outliers are detected and treated, then the cleansed dataset is examined via a clustering 133 

algorithm. Clustering algorithms also fall under unsupervised learning and aim to cluster (or 134 

group) data of similar characteristics together. In theory, points that fall into one group would have 135 

similar properties that are unlike data in other groups. As such, a clustering analysis may enable 136 

users to gain valuable insights into how their data is clustered, as such clusters can be safely 137 

assumed to behave in a similar fashion [35]. The majority of clustering algorithms group data by 138 

 
1 For completion, the original references of case study no. 2 [23] and no. 3 [18] do provide a general discussion to 

outlier treatment through traditional statistical methods. Interested readers can refer to these works for such 

discussions.  

Develop EAML digital twin

Further explore mixture vulnerability through 
explainable ML

Apply supervised ML ensemble to classify vulnerable 
clusters

Identify commonality between clusters (groups) of 
vulnerable concrete mixtures

Examine cleansed dataset through clustering 
algorithms

Apply unsupervised ML for outlier detection 
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examining how the data is spread or distant. As such, clustering can be undertaken via several 139 

methods, for example: centroid-based clustering, density-based clustering, and hierarchical 140 

clustering, etc. Commonly used clustering algorithms include k-means clustering, G-means 141 

clustering, Gaussian Mixture Models (GMMs), or Partitioning Around Medoids (PAM), etc. 142 

Given k-means’ visual simplicity and wide use in literature [31,36], this work adopts the k-means 143 

algorithm to showcase the proposed framework (and the reader is reminded that other clustering 144 

algorithms can also be used).   145 

At this stage, the dataset will be grouped into a number of independent clusters. As will be shown 146 

in the upcoming case studies, each cluster can be further examined not only to understand the 147 

commonality governing such cluster but to also relate such cluster to an expected mixture of 148 

concrete behavior (or performance). For instance, it is common for the large majority of proper 149 

mixtures (or those which have been shown to have an adequate performance) to be clustered 150 

together. Similarly, vulnerable mixtures can also be grouped into unique clusters, and these 151 

clusters can also be further investigated to arrive at the common mixture materials or proportions 152 

likely responsible for mixture vulnerability. Once such information is obtained, a user can then be 153 

trained to avoid using vulnerable mixtures.  154 

Building on the above and noting how manually analyzing clusters in real-time is time-consuming 155 

and perhaps impractical, it is then thought of to leverage ML to assist users and concrete material 156 

designers. Hence, once vulnerable clusters are identified, a supervised ML classifier can be 157 

developed to classify if a given concrete mixture would fall under a “proper” mixture or a 158 

“vulnerable” mixture – thereby negating the need for constant human intervention and providing 159 

a practical solution that can be integrated/deployed into real scenarios. Furthermore, since most 160 

supervised ML models are Blackboxes (i.e., a user does not have the ability to understand why a 161 

given model generates a decision which is seen to restrict the use of ML in real scenarios [37]), 162 

our framework proposes to augment ML models with explainability tools to allow the user from 163 

understanding the reasoning behind the each of its decisions. For example, an explainable ML 164 

model can specify why a particular concrete mixture is classified as vulnerable by articulating the 165 

influence of which mixture ingredients have led to such classification (see Fig. 2). As one can see, 166 

having such a capability increases the level of trust between ML and concrete users.  167 
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 168 

Figure 2 Illustration of explainability tool to identify responsible mixture features (i.e., 169 

ingredients) driving a ML model’s decision  170 

 171 

Recent works have noted how the reliance on a sole supervised ML classifier may yield to 172 

developing biased models or, in some instances, may not yield a near-optimal resolution 173 

effectively or timely [38,39]. As such, this work explores ensemble learning by means of multi-174 

algorithmic search to achieve the most advantageous solution [40]. In this learning, a series of 175 

algorithms search together until a solution is identified. Then, a series of fitness metrics are applied 176 

to identify the fittest solution for a problem [41]. Following this procedure, the recognized solution 177 

is scrutinized across various search mechanisms and analysis stages. 178 

Technical details and performance metrics 179 

In all stages of ML analysis, each of the used algorithms is trained and validated on randomly 180 

shuffled sets of the dataset (which is being split into three sets, T: training, V: validation, and S: 181 

testing, in a 60%:20%:20% split). The algorithm is trained and validated on the T and V sets, 182 

respectively, using 10-fold cross-validation, and is then independently cross-checked by assessing 183 

the S (left-out) set that was not part of the training procedure. The 10-fold examination is also used 184 

to arrive at optimal hyper-tuning parameters for each model. Finally, performance metrics intended 185 

to measure the closeness of model prediction to that measured are applied [42–44].  186 

In this work, three primary classification metrics are applied: the Area under the ROC curve (AUC) 187 

and Log Loss Error (LLE) – see Eqs. 1-2, as well as the confusion matrix [45–48]. The ROC curve 188 

is a graphical illustration that shows the performance of a classification ML model by plotting two 189 

parameters: true positive rate (TPR) and false positive rate (FPR). The second metric is referred to 190 

as the LLE, which yields a probability between zero and unity and penalizes for being too confident 191 

in the wrong prediction. The third metric that can be adopted to examine the performance of a 192 

classifier is known as the confusion matrix. Each row of this matrix represents the instances in the 193 
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actual class, while each column represents the instances in the predicted class. Within this matrix, 194 

five supplementary metrics (including sensitivity, specificity, precision, negative predictive value, 195 

and accuracy) can also be evaluated, as noted in Eqs. 3-7.  196 

𝐴𝑈𝐶= ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)𝑁−1

𝑖=1 (𝑇𝑃𝑖+1 − 𝑇𝑃𝑖)        (1) 197 

𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃𝑀
𝑐=1           (2) 198 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
          (3) 199 

 Measures the proportion of actual positives that are correctly identified as positives. 200 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁+𝐹𝑃
          (4) 201 

 Measures the proportion of actual negatives that are correctly identified negatives. 202 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (5) 203 

 The proportions of positive observations that are true positives. 204 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉)  =
𝑇𝑁

𝑇𝑁+𝐹𝑁
       (6) 205 

 The proportions of negative observations that are true positives. 206 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (7) 207 

 Evaluates the ratio of the number of correct predictions to the total number of samples. 208 

where, P (denotes the number of real positives), N (denotes the number of real negatives), TP 209 

(denotes true positives), TN (denotes true negatives), FP (denotes false positives), and FN (denotes 210 

false negatives), M: number of classes, c: class label, y: binary indicator (0 or 1) if c is the correct 211 

classification for a given observation. 212 

One should note that performance metrics are primarily available for supervised learning models 213 

since the dataset does include information on all variables, as well as the target of interest (i.e., 214 

“proper mixture” vs. “vulnerable mixture”). On the other hand, unsupervised ML models do not 215 

readily have performance metrics since the target of interest (i.e., number or types of clusters) is 216 

unknown beforehand. While the open literature does provide some insights and indexes that are 217 

tied to unsupervised ML models, these indexes can be applied to sample size and are primarily 218 

targeting the similarity of points within a cluster as opposed to the correctness of the number of 219 

clusters. For additional information on such metrics, the reader may refer to the Silhouette 220 

Coefficient [49] or Fowlkes-Mallows score [50]. The user is also reminded that the proposed 221 

framework can be augmented with such metrics if proven necessary.  222 
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Selected Machine Learning Algorithms   223 

This section describes the adopted algorithms in this work since their full description can be found 224 

elsewhere [51–55]. In all cases, the adopted algorithms were primarily applied in their default 225 

settings (unless otherwise specified) to create an ensemble that averages their predictions. The 226 

used algorithms can also be found at open-source and online repositories, as will be described 227 

henceforth. The proposed framework is algorithm-agnostic and hence is not only limited to the 228 

noted algorithms herein.  229 

Anomaly detection algorithms 230 

Two anomaly detection algorithms were used herein, namely, the isolation forest anomaly 231 

detection algorithm and the local outlier factor anomaly detection algorithm. The first algorithm 232 

isolates observations in a dataset by arbitrarily choosing a feature and then arbitrarily selecting a 233 

split value between the maximum and minimum values of the selected feature. This algorithm has 234 

a tree structure, and hence the number of splits required to isolate a sample is equivalent to the 235 

“path length” (which is a measure of normality where anomalies are linked to having shorter 236 

paths). This algorithm used 100 trees to start a random forest, with an expected outlier fraction of 237 

10% as recommended by the developers of this algorithm which can be found herein [56,57]. The 238 

second algorithm measures the deviation of density of a particular observation with respect to its 239 

neighbors. Thus, by comparing the local density of an observation to the local densities of its 240 

neighbors, the algorithm can identify outliers as those with a substantially lower density than their 241 

neighbors. The applied algorithm can be found herein [58]. Both algorithms were combined into 242 

an ensemble that averages their predictions into normalized anomaly scores (with scores nearing 243 

unity implying higher anomalous behavior). An anomaly is considered when its anomaly score 244 

returns a value that is larger than 0.5 [56]. In lieu of the above algorithms, other anomaly 245 

algorithms can also be used, such as Mahalanobis distance [59].   246 

k-means algorithm  247 

The fundamental idea behind k-means clustering comprises of realizing a k number of center 248 

points (known as centroids) that minimize the total intra-cluster variation. Once the centers are 249 

realized, the points nearest to the same centroid are clustered together. Oftentimes, the k-means 250 

algorithm is applied iteratively to identify the optimal number of clusters in a dataset by examining 251 

the total decrease in intra-cluster variation attained from increasing the number of clusters. Once 252 

such variation is plotted for a series of clusters (e.g., k=2-10), then the optimal number of clusters 253 

can be visually identified as the point at which the curve bends (just like an elbow, and hence is 254 

commonly referred to as the elbow method [60]). This “elbow” point corresponds to the number 255 

of clusters to use. This algorithm leverages expectation maximization and aims at minimizing the 256 

squared error function. The adopted algorithm can be found at [61,62].  257 
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Extreme Gradient Boosted Trees (ExGBT) 258 

The ExGBT is a supervised serial model that combines predictions from weaker classifiers to 259 

optimize a differentiable loss function [63]. Briefly, the ExGBT algorithm matches predictions 260 

from successive trees to residual errors as a means to focus on complex cases to predict. This 261 

algorithm learns residual error directly rather than updating the weights of data points in other 262 

algorithms such as Random forest (RF). ExGBT can be found in [64,65]. ExGBT includes the 263 

following settings of learning rate of 0.01, “least squares regression loss” function, maximum tree 264 

depth of 8, subsample feature of 0.8, and 3000 for the number of boosting stages. 265 

Light Gradient Boosted Trees (LGBT) 266 

The LGBT is a light boosting algorithm that is relatively fast as it requires little processing time 267 

[66]. This algorithm shares similarities with the more commonly used RF algorithm. Unlike RF, 268 

the LGBT does not fit the trees in parallel; but rather, it fits the trees consecutively and then fits 269 

the residual errors from all the previous trees as well. The used algorithm can be found at [67] and 270 

was implemented with the following settings: learning rate = 0.1, maximum depth = “none”, 271 

number of boosting stages = 500. 272 

Generalized Additive Model (GAM) 273 

The GAM is a simple algorithm that approximates nonlinear relationships via a linear formulation 274 

[68]of a series of smoothening functions. GAM can be represented by a linear formula or a table 275 

of coefficients. The adopted GAM incorporates a learning rate of 0.05, max depth of 3.0, with the 276 

number of boosting stages = 500. 277 

Keras Deep Residual Neural Network (KDP) 278 

KDP is a neural network model [69] with a direct connection linking data points to the target. This 279 

connection smoothens the loss function and enables network optimization. In the used KDP, a 280 

learning rate of 0.03 was used, along with a Prelu activation function, and two layers containing 281 

512 neurons. KDP can be readily found at [70]. As mentioned earlier, an ensemble made of 282 

ExGBT, GAM, and KDP was created to average their predictions.  283 

Case Studies 284 

This section describes three case studies to be used in this work. These case studies will be 285 

examined via the proposed framework and steps that mirror those shown in Fig. 1. The three case 286 

studies aim to identify vulnerable concrete mixtures to fire-induced spalling, chloride penetration, 287 

and those that do not yield the design compressive strength at in-situ jobs.  288 

Case study 1: Identifying mixtures vulnerable to fire-induced spalling   289 

Fire-induced spalling is a complex phenomenon that occurs in concrete materials once exposed to 290 

fire conditions [71]. There has been an extensive body of works dedicated to investigating this 291 

phenomenon, many of which attributes its mechanisms to vapor pressure build-up, generation of 292 

thermal stresses, and the dense microstructure of high strength concrete, among others [72–75]. 293 
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Despite the interest of this community in developing strategies to mitigate the adverse effects of 294 

fire-induced spalling, only a few works explored the use of traditional ML techniques in this area 295 

[76–78].  296 

Herein, we aim to explore the influence of mixture ingredients on the propensity of spalling via 297 

EAML. Thus, in this case study, results from 169 fire tests on reinforced concrete columns are 298 

collected into a dataset [79]. This dataset contains information with regard to the occurrence of 299 

spalling, in addition to the concrete mixture used in each tested column and proportions. More 300 

specifically, the amount of cement, coarse and fine aggregate, aggregate type (carbonate, silicious, 301 

and lightweight), silica fume, fly ash, Polypropylene fibers, steel fibers, slag, and water is 302 

documented in kg/m3 (see Fig. 3a). A Pearson correlation analysis of these components is also 303 

listed in Fig. 3b and 3c. It is clear that there is a strong correlation2 between the characteristics of 304 

aggregates and cement with spalled columns.  305 

The anomaly analysis starts by applying the anomaly ensemble to the dataset to, which noted the 306 

presence of six anomalous observations. These observations were then removed from the dataset. 307 

Then, the k-mean clustering analysis was initiated. This analysis noted the presence of four clusters 308 

(see Fig. 3d). As one can see, two clusters (clusters no. 1 and 4) reside on the left-hand side of this 309 

Biplot. A close examination of these clusters shows that they are highly related to the proportion 310 

of mixtures (with cluster no. 1 being tied to silica fume, fly ash, Polypropylene fibers, and steel 311 

fibers, and cluster no. 4 being tied to cement, coarse and fine aggregate, aggregate type and water). 312 

On the other hand, clusters no. 2 and 3 reside on the right-hand side of this figure, with cluster no. 313 

2 being the farthest (implying a unique behavior within this cluster). Figure 3e further shows that 314 

mixtures in this cluster have significantly lesser values of cement, water, and coarse and fine 315 

aggregates. Hence, one can confidently say that cluster 2 is the most vulnerable of all mixtures as 316 

all columns within this cluster have spalled. 317 

Thus, cluster no. 2 is labeled as “vulnerable”, and the supervised ML ensemble is used to develop 318 

a virtual assistant to classify mixtures that may fall into this cluster as opposed to other clusters. 319 

This ensemble achieved the following metrics on training/validation/testing through AUC and 320 

LogLoss errors = 0.982/0.996/1.000, and 0.151/0.058/0.105, respectively. In addition, this 321 

ensemble also performed well under confusion matrix metrics (approaching unity), as noted in Fig. 322 

3g. This matrix lists the number of observations that were correctly and wrongly predicted during 323 

the training/validation/testing of the models. For example, 114/22/28 implies that 114 specimens 324 

were used in the training and these were correctly predicted. In parallel, 22 and 28 specimens were 325 

examined during the validation and testing stages and these were also correctly tested, respectively. 326 

 
2 The reader must remember that this matrix shows the “linear” correlation between parameters. Other tools such as 

mutual information can be used to reveal association between parameters. 
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Hence, the developed tool can be used to identify concrete mixtures that are vulnerable to fire-327 

induced spalling.  328 

This tool can also pinpoint which components can lead to such vulnerability due to adopting 329 

explainability principles. Figure 3f illustrates the top five mixture ingredients that facilitate a 330 

mixture being of high likelihood to be in close proximity to those in cluster no. 2 (i.e., has a high 331 

vulnerability to spalling). These ingredients come to cement, water, and amount of coarse 332 

aggregate, aggregate type, and silica fume with 100%, 31%, 3%, 3%, and 1% impact on the 333 

classifier’s decision (e.g., the classifier is highly sensitive to the amount of cement and water and 334 

these two ingredients are key features of mixtures in cluster no. 2). It can be seen that lower 335 

magnitudes of cement, water, and amount of coarse aggregate are linked to higher similarity to 336 

cluster no. 2, which implies a high propensity for spalling. Other ingredients, including aggregate 337 

type, silica fume, fly ash, etc., did not seem to contribute much to the classifier’s decisions. Thus, 338 

mixtures deemed vulnerable to spalling can be automatically finetuned by manipulating the key 339 

parameters outlined in Fig. 3f to steer the mixture away from being very similar to those in cluster 340 

no. 2. For completion, Table 1 can be used to examine concrete mixtures and corresponding 341 

clusters manually.  342 

Table 1 can be adopted for manual examination of concrete mixtures and their corresponding 343 

clusters to identify those vulnerable to spalling. A look into Table 1 shows that RC columns in all 344 

other clusters have suffered from spalling in some instances and also did not go under spalling. A 345 

further examination shows that only in cluster no. 2 that all specimens suffer from spalling, while 346 

specimens in other clusters spalled in some instances and did not undergo spalling in others. 347 

Special attention to cluster no. 4 reveals that 50% of all columns in this cluster have spalled, while 348 

the remaining 50% did not spall. As such, one can argue that cluster no. 4 can also be considered 349 

“vulnerable.” If a user decides to go this route, then the developed ML classifier can be updated 350 

with such a decision to enable identifying concrete mixtures that may fall under cluster no. 2, or 351 

cluster no. 4. In this scenario, the classification problem changes from binary into a multi-class 352 

classification exercise which can be carried out with ease, as noted in earlier publications [41,80].  353 

The problem may also maintain its binary nature by considering clusters no. 2 and 4 to be 354 

vulnerable if the user does not seek to uniquely pinpoint each vulnerable cluster independently.  355 
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(a) Frequency  

 
(b) Correlation matrix 

 
(c) Correlation analysis 

 

  
(d) Clusters 

 
(e) Clusters per lines 

 
(f) Impact of influencing ingredients 

 
Predicted 

Total 
True False 

Actual 
True 114/22/28 0/0/0 Sensitivity = 0.952 

False 1/1/0 20/4/6 Specifity = 1 

 Precision = 1 NPV = 0.991 Accuracy = 0.993 

(g) Confusion matrix (Training/Validation/Testing) 

 

Fig. 3 Insights from EAML analysis 356 
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Table 1 Further insights from clustering analysis on concrete mixtures 369 

 370 

371 

 372 
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Case study 2: Identifying mixtures vulnerable to chloride penetration  373 

Chloride ions generated by marine or coastal environments can accumulate or leech on concrete 374 

structures and penetrate the underlying layers of concrete. Once successfully penetrate the deep 375 

layers of concrete, chloride ions can accelerate corrosion of steel reinforcement which may 376 

eventually lead to concrete cracking [23]. Thus, mitigating chloride penetration becomes of utmost 377 

importance to satisfy durability requirements set forth by building codes (such as ACI 318 [81]). 378 

In general, four classes describe chloride exposure: atmospheric, tidal, splash, and submerged. 379 

This case study focuses on tidal exposure and uses 386 field measurements recently collected by 380 

Cai et al. [23].  381 

In their work, Cai et al. [23] applied traditional regression ML models to predict surface chloride 382 

concentration (Cs) of concrete and reported adequate performance of coefficient of determination 383 

(R2) ranging from 0.46 to 0.83. In this case study, we will apply EAML to classify concrete 384 

mixtures that have a high vulnerability to attaining a high concentration of Cs. As mentioned 385 

earlier, the collected 386 observations contained complete information with regard to concrete 386 

mixture designs, environmental conditions, and exposure time (see Fig. 4a). More specifically, this 387 

information includes proportions of ordinary Portland cement (OPC), fly ash (FA), ground-388 

granulated blast-furnace slag (GGBS), silica fume (SF), superplasticizer, water, fine aggregate, and 389 

coarse aggregate (in kg/m3), characteristics of environmental conditions (annual mean temperature 390 

(°C), and chloride concentration (Cl) in seawater (in g/L)), and exposure time (units of annual)) 391 

[23]. Figures 4b and 4c show a glimpse of the outcome of Pearson correlation analysis of all 392 

parameters included in the aforenoted dataset. One can see a strong linear correlation between fine 393 

aggregates, silica fume, superplasticizers with chloride concentration.  394 

Similar to the analysis carried out in the first case study, the anomaly investigation was undertaken 395 

first. This investigation noted the presence of ten anomalous observations, which were removed 396 

from the dataset. The anomaly analysis was followed by the clustering analysis. Results from the 397 

k-means clustering are shown in Fig. 4d and demonstrate the existence of five clusters. At first 398 

glance, cluster no. 1 is the farthest from the center of the Biplpot chart compared to other clusters. 399 

On the other hand, clusters no. 2 and no. 3 are governed by the amount of GGBs and exposure 400 

time and coarse aggregates (with cluster no. 3 being more reliant on coarse aggregates than cluster 401 

no. 2). Finally, cluster no. 4 is primarily governed by the amount of OPC, SF, Cl, Fine aggregates, 402 

and superplasticizers, while cluster no. 5 is solely governed by FA. To complement the k-means 403 

analysis, a look into Fig. 4e shows how among all clusters, clusters no. 1 and no. 2 seem to have 404 

the most significant disturbance near the examined variables. 405 

Table 2 can be used for manual examination of concrete mixtures and corresponding clusters. It is 406 

quite clear that clusters no. 1 and no. 2 only underwent low concentrations of chloride when 407 

compared to all other clusters. This implies that mixtures in other clusters 3, 4 and 5 can be 408 

vulnerable to chloride penetration much more than those in clusters no. 1 and no. 2. Hence, clusters 409 
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no. 3, 4, and 5 are labeled as “vulnerable” and users/engineers are asked to consider the chloride-410 

based vulnerability of adopting mixtures from such clusters.  411 

Upon training and cross-validation, the developed ensemble achieved the following high ranking 412 

metrics on training/validation/testing through AUC and LogLoss errors = 1.000/1.000/1.000, and 413 

0.053/0.045/0.042, respectively. Other metrics related to the confusion matrix also performed well 414 

(approaching unity), as noted in Fig. 4g. This matrix lists the number of observations that were 415 

correctly and wrongly predicted during the training/validation/testing of the models. For example, 416 

42/9/11 means that 42 specimens were used in the training and were correctly predicted. Similarly, 417 

9 and 11 specimens were used in the validation and testing of the models and were also correctly 418 

tested, respectively. Finally, a similar approach can be used to describe 265/53/66. 419 

By adopting explainability principles, Fig. 4f can be used to identify the top five critical mixture 420 

components that can be linked to a concrete mixture being of high likelihood to be in close 421 

proximity to those in clusters no. 3, 4, or 5 (i.e., has a high vulnerability to chloride penetration). 422 

These ingredients come from water, coarse aggregate, exposure time, superplasticizers, and OPC 423 

with 100%, 94%, 91%, 89%, and 52% impact on the classifier’s decision. Figure 4f shows that 424 

mixtures with high quantities of water, coarse aggregates, and OPC are highly linked to having a 425 

high propensity to chloride penetration.  426 
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(a) Frequency 

 
(b) Correlation matrix 

 

 
(c) Correlation analysis  

 
(d) Clusters 

 
(e) Clusters per lines 

 
(f) Impact of influencing ingredients 

 
Predicted 

Total 
True False 

Actual 
True 42/9/11 1/0/0 Sensitivity = 1 

False 1/0/0 265/53/66 Specifity = 1 

 Precision = 1 NPV = 1 Accuracy = 1 

(g) Confusion matri (Training/Validation/Testing) 

Fig. 4 Insights from EAML analysis 427 
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Table 2 Further insights from clustering analysis on concrete mixtures 440 
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Case study 3: Identifying mixtures vulnerable to failing to develop full design strength at in-situ 445 

conditions  446 

In a recent study, Young et al. [18,82] present a large dataset encompassing 10,000 concrete 447 

mixtures and their corresponding measured compressive strengths from in-situ (job-site) as 448 

provided by an international vertically-integrated cement/concrete producer (VIP). This dataset 449 

was built by averaging measured compressive strength attained from testing three standard 450 

concrete cylinders that were cured following ASTM C39 for 28 days. The data set contained 451 

mixture proportions in terms of water, cement, and fly ash contents (in kg/m3 of concrete), water-452 

reducing admixture (WRA) and air-entraining admixture contents (AEA in 0.01kg/ kg of 453 

cementitious material), coarse and fine aggregate contents (in kg/m3 of concrete), and fresh air 454 

content (in volume %), and measured compressive strength for each mixture. This study then 455 

explores the use of regression-based ML algorithms to develop a model capable of predicting the 456 

28-day compressive strength of concrete. These researchers reported achieving good prediction 457 

metrics ranging between 0.49-0.59 in terms of R2 and 9-10% in terms of mean absolute percentage 458 

error (MAPE). The same researchers point out challenges that arose during their work which can 459 

be summed by the fact that complied dataset spans a considerable timeframe and includes diversity 460 

in: ambient weather conditions, quality, and composition of raws, as well as mixing procedure.  461 

Mimicking the previous two case studies, our analysis starts by removing outliers through the 462 

anomaly detection algorithms. Then, the cleansed dataset is examined via the k-means clustering 463 

algorithm to reveal four unique clusters (see Biplot in Fig. 5d). As one can see, cluster no. 3 resides 464 

on the right-hand side of this plot and seems to be influenced by AEA and WRA doses. On the other 465 

hand, clusters no. 1, and 2 are centralized near the center of the Biplot. Cluster no. 1 is governed 466 

by fine aggregates and water to binder ratio, while cluster no. 2 is mainly influenced by fly ash, 467 

AEA dose, and strength. Both clusters no. 1 and no. 2 are slightly influenced by aggregate amount. 468 

Figure 5e lays out how each cluster is influenced by all mixture proportions combined. It is 469 

noteworthy to mention that of all clusters, mixtures belonging to cluster no. 3 performed on the 470 

lower side of this figure (i.e., have lower amounts than the average or normalized mean in coarse 471 

and fine aggregates, weight, and fly ash). A cross-examination of Table 3 reveals that the number 472 

of mixtures that did not develop their intended compressive design strength as compared to the 473 

total number of samples in each cluster is 53/2772 = 1.9%, 163/5538 = 2.9%, and 53/1320 = 4% 474 

for clusters no. 1, 2 and 3, respectively. This shows that mixtures belonging to cluster no. 3 seem 475 

to be the most vulnerable – which also agrees with observations of Fig. 5e.  476 

At this point, the supervised and explainable ML ensemble is trained to classify mixtures belonging 477 

to cluster no. 3 as “vulnerable”. The ensemble achieved the following metrics in 478 

training/validation/testing through AUC and LogLoss errors = 0.999/0.998/1.000, and 479 

0.012/0.017/0.007, respectively. These metrics, together with those relating to the confusion 480 

matrix listed in Fig. 5g, show the high predictive capability of this ensemble classifier – a similar 481 
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description of the results of this matrix can mirror that in the previous two case studies. Figure 5f 482 

points out the impact of the top five influencing factors driving the rationale of the ensemble as 483 

coarse aggregates (100%), weight (80%), fine aggregates (28%), fly ash (9%), and water-binder 484 

ratio (7%) by using the explainability principles. This figure shows that having lower amounts of 485 

the above parameters may lead to a mixture being  similar to those attached to cluster no. 3. 486 
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(b) Correlation matrix 

 

 
(c) Correlation analysis  
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(e) Clusters per lines 

 
(f) Impact of influencing ingredients 

 
Predicted 

Total 
True False 

Actual 
True 1550/308/391 19/6/1 Sensitivity = 0.994 

False 40/3/9 6137/1233/1536 Specifity = 0.997 

 Precision = 0.999 NPV = 0.978 Accuracy = 0.995 

(g) Confusion matrix (Training/Validation/Testing) 

Fig. 5 Insights from EAML analysis 487 
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Table 3 Further insights from clustering analysis on concrete mixtures 497 
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Further Insights into EAML and Digital Twin for Future Gen Concretes 505 

This section presents additional insights worthy of discussion that surfaced during the development 506 

of the proposed EAML digital twin framework.  507 

Need for “quality” data 508 

The use of approaches that heavily rely on ML and data, and hence the notion of data-driven 509 

approaches, such as that presented herein, requires the availability of good quality datasets. Such 510 

datasets are expected to be thorough, timely, and well documented. In practical scenarios, attaining 511 

such datasets can be expensive (both financially and timewise), which remains a crucial challenge 512 

to integrating ML-based frameworks into the concrete industry. As such, some of the available 513 

databases, including those showcased in this work, may not contain an exhaustive list of features 514 

and may be light on some items (i.e., specifics to the chemical composition of some raws, the lack 515 

of specification pertaining to material classes such as classes of Fly ash, etc.). Further, treatment 516 

of outliers needs improvements – as some outliers may reflect experimentally correct data. New 517 

approaches based on concrete research can come in handy to expand the concrete databases and 518 

enhance the anomaly detection and outlier treatment portion of the outlined approach.  519 

However, one must realize that concrete manufacturers and producers generate a massive amount 520 

of such data on a daily basis that cover the full cycle of concrete life – most of which can be readily 521 

utilized in a digital twin. Noting the improvements in quality control and manufacturing of 522 

products in industries that adopt digital twin showcase the positive potential of integrating EAML 523 

into our industry [83]. A coalition between industry, academia, and other stakeholders can 524 

facilitate a smooth and timely integration of digital twinning [84].  525 

Selecting proper algorithms and performance metrics  526 

Another insight that is seen to be worthy of sharing revolves around the technical nature of EAML. 527 

For instance, a question may arise as to which algorithms and performance metrics can be used in 528 

developing such a framework? While the presented framework adopted three unsupervised 529 

algorithms (2 for anomaly detection and 1 for clustering) and four supervised algorithms (that are 530 

joined into an ensemble), the reader must realize that we do not yet have a standardized procedure 531 

to create digital twins [85]. Therefore, it is up to the users to create blueprints that work to their 532 

needs. The aforenoted is not to be seen as a limitation but as an opportunity that will enable us to 533 

create digital twins that are specific to the concrete industry as opposed to those commonly adopted 534 

in other industries. At the time of this write-up, the author believes that while there could be an 535 

optimal combination of algorithms and metrics that can be adopted, such a combination may only 536 

be realized through extensive trail-and-errors and investigation campaigns. This work presents the 537 

one step toward such direction and invites others to explore other combinations of algorithms and 538 

metrics. In all cases, the user is to strive to learn the advantages and limitations of the to-be-used 539 

algorithms to be able to properly gauge the merits of future digital twins. Particular attention should 540 

be paid to real-time modeling, resources needed (in terms of cloud services, coding software, etc.), 541 

and algorithm debugging, among others.  542 
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Conclusions 543 

This work presents a framework for integrating Explainable and Anomalous Machine Learning 544 

(EAML) into a digital twin to allow users to identify vulnerable concrete mixtures to extreme 545 

service loads or environmental conditions. This framework starts by applying anomaly detecting 546 

algorithms to spot suspicious data points. From then, an unsupervised clustering analysis takes 547 

place to group concrete mixtures of similar characteristics into unique clusters. These clusters are 548 

further explored to realize vulnerable mixtures to the phenomenon of interest (i.e., fire-induced 549 

spalling, chloride penetration, etc.). Once vulnerable mixtures are pinpointed, a supervised ML 550 

classifier is trained to spot such mixtures – thereby acting as a digital twin (or virtual assistance) 551 

to concrete mix designers/users. The properly validated classifiers are then augmented with 552 

explainability techniques to give users a glimpse into the decision-making process of Blackbox 553 

ML models – hence adding a new dimension of trust between ML and human users. The following 554 

list of inferences can also be drawn from the findings of this study: 555 

• EAML-based digital twin presents an attractive, customizable, and scalable approach that 556 

may lead to further modernization of the concrete research and industry.   557 

• Despite its merits, unsupervised ML remains underutilized. In this work, clustering 558 

analysis has been shown to reveal interesting observations from small and large datasets 559 

with regard to concrete mixture performance under working and extreme loading 560 

conditions.  561 

• The application of explainable ML algorithms can turn Blackbox ML models into 562 

transparent and user-trustworthy models.  563 

• A few challenges may arise with respect to integrating the proposed digital twin framework 564 

or ML-based approaches in general, such as the need for large and comprehensive datasets 565 

and proper ML applications. Fortunately, such challenges are expected to be overcome 566 

with continuous advancements in this field.  567 
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