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Abstract 9 

This paper adopts eXplainable Artificial Intelligence (XAI) to identify the key factors influencing 10 
fire-induced spalling of concrete and to extract new insights into the phenomenon of spalling by 11 
investigating over 640 fire tests. In this pursuit, an XAI model was developed, validated, and then 12 

augmented with two explainability measures, namely, Shapley Additive exPlanations (SHAP) and 13 

Local eXplainable model-agnostic explanations (LIME). The proposed XAI model not only can 14 
predict the fire-induced spalling with high accuracy (i.e., > 92%) but can also articulate the 15 
reasoning behind its predictions (as in, the proposed model can specify the rationale for each 16 

prediction instance); thus, providing us with valuable insights into the factors, as well as 17 
relationships between these factors, leading to spalling. Our findings indicate that there are eight 18 

key factors that heavily govern spalling: 1) presence of Polypropylene fibers, 2) degree of moisture 19 
content, 3) heating rate, 4) maximum exposure temperature, 5) silica fume/binder ratio, 6) 20 
sand/binder ratio, 7) water/binder ratio and 8) fly ash/binder ratio. While these factors were also 21 

listed by the majority of the existing spalling theories, the contribution of each factor seems to vary 22 
significantly and, most importantly, was not quantified for the most part. Thus, the validated model 23 

was then utilized to contrast and quantify the spalling-based knowledge domain and theories as 24 
collected by some of the most cited studies in this domain. 25 

Keywords: Spalling; eXplainable AI; Fire; Concrete.  26 

1.0 Introduction 27 

Concrete is an inert insulation building material, making it an attractive construction material from 28 
a fire engineering perspective. Yet, and regardless of its type, concrete has been shown to spall 29 
under fire conditions [1]. According to Khoury [2,3] normal strength concrete (NSC), high strength 30 
concrete (HSC), and ultra-high-performance concrete (UHPC) follow similar trends when heated, 31 

but the latter is more susceptible to spalling at elevated temperatures. Such spalling can cause acute 32 

and unpredictable damage to concrete structures.  33 

The research area on the spalling front has witnessed a series of serious efforts aimed at 34 
overcoming the mystery of spalling and finding solutions to minimize or ultimately prevent the 35 
adverse effects of spalling. These efforts have accelerated with the rise of leaner constructions 36 
which often require modern concretes [4]. Thus, understanding the underlying mechanisms behind 37 

this phenomenon is critical as this allows us to better predict spalling, as well as arrive at possible 38 
solutions to minimize its adverse effects [5–7]. 39 

A look into the existing literature shows that spalling can occur due to 1) pore pressure 40 
accumulation as induced by the rise in temperature and evaporating moisture, 2) the presence of 41 

https://doi.org/10.1016/j.conbuildmat.2022.128648
https://doi.org/10.1016/j.conbuildmat.2022.128648
mailto:malbash@clemson.edu
mailto:mznaser@clemson.edu
http://www.mznaser.com/


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.conbuildmat.2022.128648.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Verifying Domain Knowledge and Theories on Fire-induced Spalling of 

Concrete through eXplainable Artificial Intelligence. Construction and Building Materials. 

https://doi.org/10.1016/j.conbuildmat.2022.128648.      

2 
 

compression forces upon heated surfaces as a result of thermal gradients, 3) the initiation of 42 

internal cracking due to difference in thermal expansion between aggregate and cement paste 43 
and/or thermal expansion/deformation between concrete and reinforcement bars, 4) and strength 44 
loss due to chemical transformations during heating [2,3,8].  45 

To further elaborate on the above, there are a few common factors that influence spalling. For 46 
example, it is widely recognized that the degree of moisture content of concrete is a critical factor 47 
that can influence spalling, especially for mixtures containing more than 2–3% moisture content 48 
by weight [2,9]. The heating rate is another critical factor that is tied to spalling (i.e., spalling was 49 

detected under both high heating (above 10oC/min) [10–12] and low heating rates (0.5-2oC/min)  50 
[13,14]. In parallel to the heating rate, the maximum exposure temperature was also seen to 51 
influence spalling (with high temperatures exceeding 500-600oC can increase spalling risk). The 52 

presence of silica fume in concrete mixtures also increases the risk of spalling [2,15–18]. In 53 

contrast, the inclusion of Polypropylene (PP) fibers has been noted to be an effective filler to 54 
reduce spalling [2,18–20] (with some exceptions [2]).  55 

At the moment, structural fire engineers struggle to accurately predict the spalling phenomenon. 56 
So far, a few theories have been proposed to explain the effects of heat on concrete. The majority 57 

of such theories were arrived at from experimental tests and empirical analysis. However, little 58 
consensus has been reached on the fire-induced concrete spalling mechanisms [5,21]. This can be 59 
perceived as an opportunity to explore new approaches. The role of artificial intelligence (AI) can 60 

be an attractive choice given its rise within our domain [18], as it has not been heavily explored as 61 

much as fire testing and modeling methods [22]. 62 

Despite their proven merit in exploring structural fire engineering problems, AI models often 63 
comprise complex algorithms (hence, the perception of black-box models [23]). A common notion 64 

within such models is that they seem to be capable of predicting fire engineering phenomena with 65 
ease (and a high degree of accuracy). However, such models may not adequately describe the 66 
reasoning behind their accurate predictions [23,24]. In order to understand such reasoning, we 67 

need an additional method/technique to be able to dive into the black box and uncover how the 68 
model works well. Put another way, we ought to know why do AI models predict a given 69 
phenomenon accurately, and if we could understand the rationale behind such accurate predictions, 70 
then we may be able to extract new knowledge on the phenomenon at hand.  71 

Thus, building an XAI model is crucial at this point to diagnose the reasoning behind such 72 

predictions [25]. Creating explainable models is also elemental to enable transparency between 73 
engineers and AI models [26–28]; since the end-users are likely to prefer and adopt interpretable 74 
solutions.  75 

This work aims to maximize the positive potential of XAI for three objectives; 1) to create a model 76 
that can predict the spalling phenomenon accurately, 2) to extract new insights into fire-induced 77 
spalling as obtained by two explainability measures (SHAP and LIME), and 3) verify findings of 78 
notable studies against that of those attained from XAI by examining one of the largest databases 79 
on fire-induced spalling compiled so far (>640 tests). Finally, structural fire engineers will be able 80 
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to apply and extend upon our verified model with the help of the proposed XAI model, which will 81 

be provided at the end of this paper. 82 

2.0 A brief overview of spalling theories and mechanisms: 83 
Various studies have been conducted on the fire-induced spalling of concrete. One of the earliest 84 

systematic spalling tests conducted in the twentieth century was carried out by Gary [29–31] as 85 
reported by Mayer-Ottens [6,32]. These studies classified spalling into four general categories, 1) 86 
aggregate spalling, which is attributed to the mineralogical characters of the aggregates, 2) surface 87 
spalling that occurs at the surfaces of the structural elements, 3) corner spalling, which is an 88 

explosive spalling that takes place at the corners of members, and  4) wall explosive spalling, which 89 
is an explosive spalling that takes place in walls [6]. 90 

In parallel to the above classes of spalling, the open literature also classifies spalling according to 91 

three mechanisms, 1) thermo-chemical, 2) thermo-hygral, and 3) thermo-mechanical. There are 92 
two types of thermo-chemical spalling: sloughing-off spalling and post-cooling spalling, and both 93 
are primarily related to the decomposition of hydrated products and calcite and rehydration of 94 

calcium oxide. Thermo-hygral spalling is the type of spalling that occurs due to moisture clogging 95 
and pore pressure. And thermo-mechanical spalling is related to loading, stresses, and restraint 96 

conditions [5]. These three mechanisms are further articulated below. 97 

Thermo-chemical spalling occurs when concrete is exposed to high temperatures and triggering a 98 
series of chemical reactions. For example, in the range of 25oC to 100oC, aggregates and the paste 99 

start to expand. At 150oC, most of the water content in the concrete starts to evaporate, and the 100 
paste shrinks in return (while the aggregates keep expanding). As a result of these conflicting 101 

actions, micro-cracks are created. While concrete is hot and expansive, these microcracks are 102 
small, and once concrete cools down and shrinks, the cracks become larger. When the concrete 103 

loses strength during heating, the cracks further expand and open. Around 450oC, the aggregates 104 
start to deteriorate, and hydration products, calcium hydroxide, and calcium silicate hydrate, also 105 
begin to decompose.  106 

Such deterioration is heavily influenced by the type of aggregate used in the concrete mixture 107 
[2,5]. For example, flint aggregates (below 350oC) and granite and quartz (up to 600oC) aggregates 108 
undergo the above critical transformation. This makes granite and quartz a better choice to resist 109 

spalling1 [26]. Overall, spalling is more likely to occur when lightweight aggregate is used. This 110 

is mainly because the lightweight aggregate contains a higher degree of free moisture, which 111 

causes the development of larger pore pressure inside the fire-exposed concrete member. Reaching 112 
about 550oC to 600oC, concrete starts to rapidly lose strength, which further accelerates the domino 113 
effects of the above reactions [2].  114 

Thermo-hygral spalling is induced by moisture clogging and pore pressure build-up inside heated 115 
concrete. Under this mechanism, a layer of material saturated with water is formed, called a 116 
moisture clog zone [5,6,33]. When concrete heats, the available moisture is released outwards, 117 
while most of the moisture does travel towards the center of the concrete member until the 118 

 
1 During rapidly developing fires both granite and quartz can cause intense spalling of concrete. 
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thermodynamic conditions are satisfied for vapor condensation. In the core, the water starts to 119 

condense, and concrete resists the infiltration permeation of this water. When the vapor pressure 120 
exceeds the tensile strength of the concrete mix, the surface of the concrete spalls, thus exposing 121 
the internal layers to fire. This type of spalling is violent as it results as it is accompanied by energy 122 
released in the form of popping off of the pieces and small slices with a certain speed and a popping 123 
or cracking sound. 124 

Thermo-mechanical spalling occurs when a concrete member is experiencing a fire, introducing 125 
thermal stresses generated from differential thermal gradients and thermal restraints inside the 126 

concrete member, which causes the concrete surface to experience triaxial stresses [34]. Note that 127 
the behavior of concrete under fire is a combination of all three mechanisms. Identifying and 128 
understanding their contributed factors is essential to understanding the spalling mechanism 129 

[5,34,35]. In this work, we will be focusing on the factors that contribute to the first two 130 

mechanisms.  131 

Hasenjager [6,36] noted that, in general, fire-induced spalling is highly influenced by 1) heating 132 

rate, 2) sudden changes in member size and the volume of the aggregate used in the concrete mix, 133 
3) water vapor pressure and gasses from the aggregate and the cement paste, as well as 4) 134 

exceeding the tensile strength by unilateral strain. According to Kang [5], thermo-chemical 135 
spalling is influenced by the decomposition of hydrated products and calcite and the rehydration of 136 
calcium oxide. It typically occurs at temperatures greater than 700°C.  137 

Kang [5] also suggests that the thermo-hygral spalling is related to moisture content and moisture 138 
clogging phenomena, which occur when pressure exceeds the tensile strength of concrete. Hertz 139 

[37] pointed out that the moisture content in concrete must be considered the most critical factor 140 
in influencing explosive spalling. Hertz argued that NSC would not spall if it is dry. All other 141 

factors mentioned in this paper and other papers may contribute to the effect of spalling but cannot 142 
cause spalling without moisture and concluded that significant spalling is not expected when the 143 
moisture content is less than 3% by weight. However, the spalling effect can be mild when the 144 

moisture content is between 3-4% [37]. 145 

Eurocode states that spalling is unlikely to take place when the moisture content of concrete is 146 
lower than 3%. Not only but also, Khoury [2], Kodur [38], and Copier [39] concluded that high 147 

moisture content is a critical factor for explosive spalling, along with many other studies [40–42]. 148 
Also, a recent study by Klingsch [43] notes that even low moisture content can cause explosive 149 

spalling and confirms that the release of high pore pressure is more important than the initial 150 
moisture content in the concrete mix.  151 

It is worth noting that discussions on moisture content and permeability date back to Harmathy 152 
[51], indicating that the lower the permeability of concrete, the higher the spalling risk is. This is 153 
also shown by Zhukov [52], who finds that granite-based concrete of 40MPa experienced spalling 154 
at 3% moisture by weight while 20MPa concrete experienced spalling at 4%. It should be noted 155 
that Eurocode [44] did not mention specifications regarding the permeability of concrete, which is 156 
widely agreed that is directly proportional to the migration of moisture content in a concrete 157 
member [2,4,40,45–47], not the tensile strength [48–50]. 158 

https://doi.org/10.1016/j.conbuildmat.2022.128648
https://doi.org/10.1016/j.conbuildmat.2022.128648
https://www.sciencedirect.com/topics/materials-science/calcite
https://www.sciencedirect.com/topics/engineering/rehydration


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.conbuildmat.2022.128648.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Verifying Domain Knowledge and Theories on Fire-induced Spalling of 

Concrete through eXplainable Artificial Intelligence. Construction and Building Materials. 

https://doi.org/10.1016/j.conbuildmat.2022.128648.      

5 
 

Hertz [54] noticed the high risk of spalling in concrete densified by silica fume (densified by means 159 

of ultra-fine particles smaller than the cement particles). According to Kang [5] and Klingsch [43], 160 
concrete with silica fume had a higher risk of thermal spalling than concrete without silica fume. 161 
Kodur [48] has also shown that concrete with silica fume densifies the pore structure and decreases 162 
permeability [48]. Kodur [38], while conducting experiments with the National Research Council 163 
of Canada(NRCC) and taking into consideration other laboratories' outcomes, reported that the 164 

permeability of concrete significantly influences spalling.  165 

Typically, the probability of spalling under a high heating rate is more significant than when the 166 

member is experiencing a low heating rate. Khoury [2] suggested that heating rates above 3oC/min 167 
are critical rates [2]. However, spalling has also been observed for some dense concretes, which 168 
would never occur in traditional concrete. For UHPC with low permeability, spalling has been 169 

observed under both low and high heating rates [5].  170 

Maximum exposure temperature is widely known to be a critical factor in fire-induced spalling. 171 
Kodur [38,48], Kang [5] and Khoury [2] proposed that the critical temperature for spalling is 172 

around 550oC with some exceptions2 for Kang, specifying that the critical range is between 380-173 

700oC for the different spalling mechanisms mentioned above. At the same time, Hertz[37] 174 
concluded that spalling often occurs near the critical point of steam at 374oC.  175 

Khoury [2] reported that aggregates with rugged surfaces could increase the physical bonding with 176 

the cement paste and can mitigate spalling. In addition, Klingsch [43] stated that aggregates with 177 

low thermal expansion have more thermal compatibility with cement paste and can mitigate 178 

spalling. Barret [53] stated that the aggregate type influences spalling of concrete. Also, Kang [5] 179 
reported a similar conclusion and added that using flint as an aggregate of concrete induces 180 

aggregate spalling. Kodur [38] pointed out that using siliceous aggregate (i.e., quartz) in an HSC 181 
mix can increase the susceptibility of spalling compared to carbonate aggregate due to the high 182 
heating capacity of the carbonate aggregate (I.e., limestone). Kodur [38] also added that spalling 183 

would have a higher likelihood of occurring when the lightweight aggregate is used in the HSC 184 
mix, explaining that lightweight aggregates contain more free moisture than normal-weight 185 
aggregates. 186 

There are a few solutions to mitigate spalling; one solution is by including PP fibers in the concrete 187 
mixture at about 2% by volume [38]. Those fibers start to melt at 170oC, which creates a network 188 
of relief channels for water vapor to escape and the pressure to be released [33]. It should be noted 189 

that ACI 216.1 [55], Jansson [1], Khoury [56], Kodur [38,57], Hertz [37], and many more 190 
demonstrated that using PP fibers in the HSC and UHSC mixtures could minimize the spalling 191 
effects[58,59]. Also, Klingsch [43] suggested that the use of PP fibers minimizes the risk of 192 

explosive spalling and reduces the amount of concrete spalled from the specimen (flaking). 193 

According to Hertz [37] and Kodur [38,57], including steel fibers increases the tensile strength of 194 
concrete members, even at elevated temperatures, which will help to resist the pore pressure 195 

 
2 Kang is proposing different spalling mechanisms with different temperatures, which will be discussed later in this 

work. 

https://doi.org/10.1016/j.conbuildmat.2022.128648
https://doi.org/10.1016/j.conbuildmat.2022.128648


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.conbuildmat.2022.128648.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Verifying Domain Knowledge and Theories on Fire-induced Spalling of 

Concrete through eXplainable Artificial Intelligence. Construction and Building Materials. 

https://doi.org/10.1016/j.conbuildmat.2022.128648.      

6 
 

generated from the heating moisture content or water inside the concrete. Under these 196 

circumstances, 2-3 hours are provided for the structure to resist fire without significant spalling, 197 
which will give enough time for evacuation proposes and firefighters to control the fire. 198 

As one can see, the above notable studies have provided general guidance on the phenomenon of 199 

fire-induced spalling. However, much of the existing works on spalling were, understandably, 200 
limited by the testing scale or magnitude and/or span of explored factors [37,57,60,61]. We aim to 201 
further extend these studies by means of XAI.  202 

3.0 Model description 203 

This section describes the dataset used in developing the XAI model and the approach adopted in 204 
this study. 205 

3.1 Dataset statistical details 206 

The used dataset contained 646 test samples collected by Ref. [62–66]. This dataset comprises 16 207 
independent variables known to influence fire-induced spalling in concrete and one dependent 208 

variable, which describes the occurrence of spalling via two labels: no spalling or spalling. The 16 209 
independent variables are: water/binder ratio (%), aggregate/binder ratio (%), sand/binder ratio 210 
(%), heating rate (oC/min), moisture content, maximum exposure temperature (oC), silica 211 

fume/binder ratio (%), aggregate size (mm), GGBS/binder ratio (%), FA/binder ratio (%), PP fibers 212 
quantity (kg/m3), PP fibers diameter (um), PP fibers length (mm), steel fibers quantity (kg/m3),  213 

steel fibers diameter (mm), steel fibers length (mm). It should be noted that raw proportions were 214 

kept as a ratio of the binder for simplicity and consistency. The graphical distribution of all the 215 

variables in this dataset is plotted in Fig 1, and the statistical analysis that summarizes the collected 216 
dataset's main attributes is tabulated in Table 1. 217 
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Fig. 1 Summary of statistical analysis of the fire-induced spalling concrete dataset. 218 
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Table 1: Summary of statistical insights for the parameters of the dataset. 219 

Parameter Min Max Median Mean 
Standard 

deviation 
Skew 

Water/binder ratio (%) 0.12 0.61 0.27 0.29 0.12 0.93 

Aggregate/binder ratio (%) 0.00 3.95 1.28 1.15 1.12 0.43 
Sand/binder ratio (%) 0.35 3.38 1.22 1.40 0.55 1.34 
Heating rate (oC/min) 0.25 240.00 7.00 20.85 36.93 2.93 

Moisture content  0.00 0.07 0.03 0.03 0.02 0.13 
Maximum exposure temperature (oC) 100.00 1200.00 600.00 561.28 234.32 0.13 
Silica fume/binder ratio (%) 0.00 0.23 0.00 0.07 0.09 0.70 

Aggregate size (mm) 0.12 32.00 8.00 8.26 7.60 0.52 
GGBS/binder ratio (%) 0.00 0.46 0.00 0.04 0.10 2.54 
FA/binder ratio (%) 0.00 0.70 0.00 0.04 0.11 3.73 

PP fibers quantity (kg/m3) 0.00 14.56 0.00 0.97 1.91 3.50 
PP fibers diameter(um) 0.00 100.00 0.00 11.43 17.18 2.02 
PP fibers length (mm) 0.00 15.00 0.00 3.12 4.43 1.15 

Steel fibers quantity (kg/m3) 0.00 243.00 0.00 51.48 76.76 1.35 
Steel fibers diameter(mm) 0.00 1.00 0.00 0.13 0.21 2.11 
Steel fibers length (mm) 0.00 60.00 0.00 6.30 10.25 2.38 

 220 

In addition to the above statistical histograms and insights, the Pearson's correlation heatmap, 221 

which demonstrates the linear relationship between spalling and all other variables, can be seen in 222 
Fig. 2. This heatmap identifies which variables have the largest and lowest degrees of linear 223 
correlation with regard to spalling. In general, all parameters yielded a weak (i.e., 0.3-0.5) linear 224 

correlation to spalling. As such, we suspect the actual relationships are likely to be nonlinear. 225 
Despite the above, we report that the parameters with the largest positive linear correlation with 226 

spalling are maximum exposure temperature (0.42), moisture content (0.32), and heating rate 227 
(0.26), respectively. On the other side, the key factors that have a negative linear correlation to the 228 

occurrence of spalling are the PP fibers quantity (-0.18), followed by the water/binder ratio (-0.16), 229 
and then the sand/binder ratio (-0.15).  230 

To overcome the linear assumption of the Pearson coefficient, the Spearman correlation 231 
coefficient, which measures the monotonic relation between a pair of variables, is listed in Fig. 2 232 
too. From this lens, the parameters that positively influence the occurrence of spalling are 233 
maximum exposure temperature (0.69), moisture content (0.54), heating rate (0.46), and 234 

GGBS/binder ratio (0.42), arranged in descending order. On the other hand, the parameters that 235 
reduce the occurrence of spalling are the steel fibers length (-0.30) and diameter (-0.27), followed 236 
by the FA/binder ratio (-0.24). 237 

A cross-examination of the Pearson and Spearman heatmaps shows that both maps are similar in 238 
terms of the parameters tied to the occurrence of spalling (i.e., maximum exposure temperature, 239 
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moisture content, and heating rate). However, they differ in terms of the parameters that seem to 240 

control spalling. This indicates that the factors governing fire-induced spalling of concrete are not 241 
linearly nor monotonically associated. 242 
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Fig. 2 Pearson correlation heatmap (top) and Spearman correlation heatmap (bottom) 243 

https://doi.org/10.1016/j.conbuildmat.2022.128648
https://doi.org/10.1016/j.conbuildmat.2022.128648


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.conbuildmat.2022.128648.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Verifying Domain Knowledge and Theories on Fire-induced Spalling of 

Concrete through eXplainable Artificial Intelligence. Construction and Building Materials. 

https://doi.org/10.1016/j.conbuildmat.2022.128648.      

12 
 

3.2 Details of the XGBoost algorithm 244 

A supervised AI algorithm was used herein to build a model to accurately predict fire-induced 245 
spalling in concrete. We opt to use the XGBoost algorithm as a result of a recent study that we 246 
have recently published [67]. This is a decision-tree-based AI algorithm that uses a gradient 247 
boosting framework [68]. This algorithm assigns a numerical score to the tree leaves, and the score 248 

corresponds to whether the instance belongs to the decision. Once the tree reaches the end of the 249 
training data, the algorithm converts the numerical score into a categorical score leading to an 250 
answer for each instance. In our analysis, the developed algorithm was tweaked with the following 251 

settings: learning rate = 0.05, objective = binary: logistic, missing value =1, seed = 42, The degree 252 
of verbosity = True, early stopping rounds =100. The full code developed in this study will be 253 
provided in the Appendix. 254 

The developed algorithm was trained and verified on the compiled dataset. The dataset was split 255 

into a T: training set, validated against the V: validation set, and independently tested against the 256 
S: testing set. In total, the T and V sets comprise 70% of the dataset, and the S set comprises 30%. 257 
Then, a k-fold cross-validation procedure is also applied. In such a procedure, the T set is randomly 258 

split up into k groups, wherein the model is trained using k-1 sets and then validated on the last k 259 
set. This procedure is repeated k times until each unique set has been used as the validation set. k 260 

in this study was taken as 10.  261 

The performance of the model was then analyzed using dedicated classification performance 262 

metrics such as the area under the (precision-recall) curve (PR AUC) and the confusion matrix. 263 

The PR AUC displays the average of precision scores calculated for each recall threshold. Further, 264 
a confusion matrix was also used herein to examine the performance of the model. The confusion 265 

matrix showcases a visual comparison between the actual class and the predicted class. This matrix 266 
also homes other metrics such as sensitivity, precision, and accuracy (see Table 2). It is a table that 267 
represents the performance of the XGBoost classification algorithm and provides more insight into 268 

not only the performance of a predictive model but also which classes are being predicted correctly.  269 

Table 2: Summary of evaluation metrics used in the AI model. 270 

Performance metrics Expression Remarks 

PR AUC 𝐴𝑈𝐶 = ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 
FP: number of false positives. 

TP: number of true positives. 

Confusion 

matrix 

Sensitivity (recall) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Accuracy = 
𝑇𝑃+𝑇𝑁

 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

 

 
TN: number of true negatives), 

FN: number of false negatives 
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 271 

3.3 Explainability measures 272 

The second objective of this work is to describe how the selected parameters of the compiled 273 

dataset in Table 1 contribute to spalling via two explainability measures, namely, SHAP and 274 
LIME. 275 

Shapley Additive exPlanations (SHAP) [69] is an agnostic tool that can augment AI models by 276 

visualizing its output in terms of computing the contribution of each factor to the final prediction. 277 
Providing both global and local interpretation methods based on the aggregations of Shapley 278 

values instead of using factors in the dataset [70]. Mathematically expressed in Table 3, SHAP 279 
interpretations iterate over all possible factors and combinations of factors to ensure that the model 280 

accounts for the interactions between all individual factors. As one can see, the concept of SHAP 281 
is straightforward; however, when considering the interactions between the factors, this method 282 

can be timely and computationally intensive.  283 

Table 3: Summary of explainability measures used in the XAI model. 284 

SHAP LIME 

∅𝑖 =  ∑
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!
[𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)]𝑆⊆𝑁\{𝑖}   𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) =

arg min𝑔∈𝐺 𝐿(𝑓, 𝑔, 𝜋𝑥) = Ω(𝑔)  

S|!: the number of permutations of feature values that 

appear before i-th feature value. 

(|M|-|S|-1)! : represents the number of permutations 

of feature values that appear after the i-th feature 

value. The difference term in the above equation is 

the marginal contribution of adding the i-th feature 

value to S. 

 

 285 

To get an overview (global) perspective and investigate the importance of each factor in the 286 
dataset, SHAP generates a feature importance graph summary plot. This plot uses the average 287 
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magnitude of Shapley values calculated using the equation provided in Table 3 and plots a series 288 

of horizontal graphs that represents the contribution of each factor. Overall, the graph sorts the 289 
factors in descending order from the highest contributor to the lowest based on their impact on the 290 
model prediction. On the local interpretability front, SHAP can also generate a force plot to 291 
represent the most critical factors influencing spalling and how each factor contributes to the 292 
prediction, starting from a base value (the averaged predicted probability across all samples). 293 

In lieu of SHAP, LIME (Local eXplainable model-agnostic explanations) is another explainability 294 
measure. The basic idea of LIME is to zoom into each individual prediction, thus, providing local 295 

interpretability for the AI model. LIME works by modifying the input to the model locally instead 296 
of trying to understand the entire model simultaneously. A specific input instance is altered, and 297 
the impact on the predictions is monitored, which will help determine which changes will have the 298 
most impact on the prediction. The output of LIME is a list of illustrations reflecting the 299 

contribution of each factor to the prediction of a data sample [71].   300 

LIME is also mathematically expressed in Table 3. The complex model is denoted with F, and the 301 
simple model 'local model' is denoted with g. This simple model g comes from a set of interpretable 302 

linear models denoted with G. The third argument, Pi, defines the local neighborhoods of that data 303 
point and is some sort of proximity measure. The second last term is used to regularize the 304 

complexity of our simple surrogate model. Ω is a complexity measure, and as this optimization 305 
problem is a minimization problem, we want to minimize the complexity. 306 

4.0 Discussion and results  307 
This section presents the findings and outcomes of our XAI analysis. This discussion starts by 308 

showcasing the validation of the XAI model, then presents the results of SHAP's explainability 309 

analysis (on the global scale: as in identifying the key factors that influence spalling and the 310 

interaction between these parameters taking into account the whole dataset) and then SHAP's and 311 

LIME's explainability analysis (on the local scale: as in identifying the model's rationale for 312 

individual predictions). 313 

4.1 Model validation   314 

As mentioned earlier, the PR AUC plot was used for the validation of the model. This graph 315 

illustrates the model's performance; the larger the area under the curve is, the better the model's 316 

accuracy. For example, a perfect AUC will be as far as it can from the dashed line, which indicates 317 

a general average performance. Note that as the curve gets closer to the upper left corner, the 318 

model's accuracy increases, indicating a higher accuracy model. Two AUC curves are illustrated 319 

in Fig. 3 to show the reader how accurate our model is in predicting spalling in the training and 320 

testing stages. The area under the curve was calculated using the sklearn library and turns out to 321 

be 90.7% for the training set and 86.6% for the testing set. Also, it can be seen that the true positives 322 

dominating the curve are as close to the upper left side as possible. 323 
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Fig. 3 Validation of model via the PR AUC metric 324 

Figure 4 shows the confusion matrix used in this work to validate the developed model. This matrix 325 

shows exactly how many instances the model has correctly and mistakenly made. Both training 326 

set and testing sets achieved a good overall accuracy, precision and sensitivity. All the three 327 

evaluation metrics associated with the confusion matrix are tabulated together with the confusion 328 

matrix (see Fig. 4). It is clearly seen on the diagonal line from the top left to the bottom right that 329 

for the training set, 329 samples and 97 samples were correctly classified as no spalling, spalling, 330 

respectively. Similarly, 131 samples and 45 samples were correctly classified as spalling, spalling, 331 

respectively. In contrast, the model mis-performed in 26 (19+7) instances and 18 (14+4) instances 332 

during the training and testing stages, respectively.  333 

Fig. 4 Validation of model via the confusion matrix metric  334 

  
Class Accuracy Percision Sensitivity 

No 

Spalling 94% 
95% 98% 

Spalling 93% 84% 
 

Class Accuracy Percision Sensitivity 

No 

Spalling 91% 
90% 97% 

Spalling 92% 76% 
 

https://doi.org/10.1016/j.conbuildmat.2022.128648
https://doi.org/10.1016/j.conbuildmat.2022.128648


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.conbuildmat.2022.128648.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Verifying Domain Knowledge and Theories on Fire-induced Spalling of 

Concrete through eXplainable Artificial Intelligence. Construction and Building Materials. 

https://doi.org/10.1016/j.conbuildmat.2022.128648.      

16 
 

4.2 Global explainability  335 

4.2.1 SHAP global plots 336 

The explainability measure, SHAP, when augmenting the developed model, can generate two 337 
types of visualizations. Namely, the Summary plot and factor importance plot. These two 338 
visualizations will be covered herein. 339 

The Summary plot represents the importance of each factor by reflecting the impact of each factor 340 
on the predictions' goodness. This plot orders the parameters vertically in terms of their importance 341 
to the model's accuracy (see Fig. 5). The same plot also demonstrates the range of points (e.g., 342 

feature value) each parameter has for that specific instance, so each point represents one sample 343 
associated with that particular parameter. Overall, one can see that parameters of large distributions 344 
seem to significantly affect the obtained predictions as opposed to parameters with narrower 345 

dispersion. In addition, this plot uses colors to distinguish the influence of the quantity of a given 346 
parameter upon the occurrence of spalling (i.e., red instances represent larger values and affect the 347 
model prediction depending on the side on which the red dots lie. For instance, a high quantity of 348 

PP fibers is likely to prevent spalling, while exposure to elevated temperatures increases the 349 
tendency to spalling.  350 

 351 

Fig. 5 Summary plot of SHAP values 352 

Spalling No spalling 
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 353 

A closer examination of Fig. 5 shows additional insights. For instance, the PP diameter is almost 354 
at 0; not having a spread in either direction indicates that the factor does not seem to affect the 355 
model's prediction. Similarly, by looking at the FA/binder ratio, the points are skewed to the 356 

negative side, indicating a significant effect on the instances correctly predicted with no spalling 357 
(i.e., red color dots represent that specimens with high values of FA/binder ratio did not spall as 358 
much as their counterparts with low FA/binder ratio). On the other side, the spread can be 359 
insignificant when the dots build over themselves (demonstrating that a high density of samples 360 

having the same range of positive effects on the prediction). The blue-colored dots indicate that 361 
specimens with lower FA/binder ratios are associated with spalling.  362 

Similarly, the higher the PP fiber content, the lower the probability of spalling occurrence. It is 363 

also clear that high values of any of the following factors: moisture content, maximum exposure 364 
temperature, heating rate, and silica fume/binder ratio increase the likelihood of spalling. To 365 
conclude, higher values of PP fibers and sand/binder, water/binder, FA/binder ratios mitigate 366 

spalling. As opposed to having higher moisture content values, maximum exposure temperature, 367 
silica fume/binder ratio, and heating rate influence the specimen positively to spall. The other 368 

bottom eight parameters have an insignificant effect on the prediction. 369 

In addition to the density Summary plot of SHAP, another visualization can be generated. This 370 
new visualization is shown in Fig 6 and is referred to as the factor importance plot. The factor 371 

importance plot lists the most significant parameters in descending order. The first listed 372 
parameters contribute more to the model than the bottom ones (i.e., they have higher predictive 373 

power than the lower ones). It should be noted that global importance gives an average overview 374 
of all parameters and how they contribute to the model. However, Fig. 6 lacks the direction of 375 

impact, e.g., whether a variable has a positive or negative influence. 376 

Combining the outcomes of Figs. 5 and 6, one can see that eight parameters seem to heavily 377 
influence the occurrence of spalling. These include PP fibers quantity, moisture content, maximum 378 
exposure temperature, silica fume/binder ratio, heating rate, sand/binder ratio, water/binder ratio, 379 
and FA/biner ratio. Thus, we will be focusing our discussion on these variables.  380 

 381 
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 382 
Fig. 6 Factor importance plot 383 

4.2.2 Partial dependence plots 384 

The Partial dependence plots are another model agnostic method that can be used for outlining the 385 

global explainability of XAI models. Such a plot depicts the relation between a specific parameter 386 
and the target variable (i.e., the occurrence of spalling/no spalling)3. The horizontal axis of this 387 

figure shows the value of the parameter on hand, and the vertical axis shows the probability of 388 
spalling occurrence (see Fig 7).  389 

Looking at the average4 of each partial dependence plot, one can see some critical trends. For 390 

example, the spalling tendency is tied to concrete mixtures with a moisture content that is larger 391 
than 3%. Similarly, the spalling tendency also increases when the exposure temperature increases 392 

beyond 400°C. In parallel, the risk of spalling seems to stabilize in the ranges of 200-500°C, 500-393 

700°C, and beyond 700°C. We believe that this staggering trend could be due to the fire testing 394 

procedure followed in the sources used to compile the dataset, wherein these specific temperatures 395 
were explicitly used as maximum temperatures. 396 

Further, the silica fume/binder ratio increase indicates a higher likelihood to spalling. The rise in 397 

heating rate (upward of 5°C/min) positively correlates with spalling; when the values increase, the 398 

 
3 Note that a partial dependence plot for a specific variable assumes that all other parameters remain unchanged 

(constant). 
4 We would like to point out that our discussion revolves around the average of the PDP to show the general 

observed trends as outcome from our analysis. The reader may also examine other individual trends as well. 
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likelihood of spalling occurrence also increases. The plot for PP quantity shows a unique response. 399 

This plot shows that using 0.5-0.75 kg/m3 in the concrete mix can significantly decrease the 400 

probability of spalling; however, reaching a range of 0.8-0.9 kg/m3 will increase the spalling 401 

occurrence to the same likelihood if the concrete mix did not include PP fibers. Finally, adding 402 

more than 1.0 kg/m3 will decrease the spalling in the concrete mix again. At the moment, we are 403 

exploring the reasoning behind this unique response. We suspect that this can be attributed to some 404 

form of interaction between PP and other mix proportions. Overall, the inclusion of PP fibers > 2 405 

kg/m3 seems to significantly reduce the risk of spalling.  406 
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 407 

Fig. 7 Partial dependence plot for the top eight influencers of spalling 408 

4.3 Local explainability 409 

The previous section presents global explainability as obtained by SHAP from examining the 410 

model behavior (i.e., as averaged across all prediction cases). The same implies that the generated 411 
trends may differ (on average) between individual prediction instances.  412 

Thus, this section will dive into showcasing local explainability for such individual cases to 413 

examine the model prediction for that instance by means of SHAP and LIME. For instance, Table 414 
4 lists the concrete mixture for one sample used in the testing stage. This sample (which did not 415 

spall while being tested) will be examined via SHAP and LIME herein.  416 

Table 4 Properties of a typical sample 417 
Factor Value Factor Value 

Water/binder ratio (%) 0.269 FA/binder ratio (%) 0 

Aggregate/binder ratio (%) 1.194 PP fibers quantity (kg/m3) 0 

Sand/binder ratio (%) 1.194 PP fibers diameter(um) 0 

Heating rate (oC/min) 2 PP fibers length (mm) 0 

Moisture content  0 Steel fibers quantity (kg/m3) 156 

Maximum exposure temperature (oC) 200 Steel fibers diameter(mm) 0.15 

Silica fume/binder ratio (%) 0.099 Steel fibers length (mm) 6 

Aggregate size (mm) 8   

 418 

4.3.1 SHAP local plot 419 

The Force plot represents each parameter's contribution to the prediction for a specific observation 420 

(see Fig. 8). Another version of this plot is the waterfall plot (also see Fig. 8). The contribution of 421 
each parameter, starting with a calculated SHAP base value of 0.2363, adds up to the final 422 
prediction (i.e., with unity indicating spalling). In Fig 8, the larger the bar is, the higher the impact 423 
of its corresponding parameter on the predicted outcome. It allows the model to explain precisely 424 
how each prediction has been built up from all the individual factors in the model.  425 
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Interpretation: The plot provides:  426 

• The model predicted a low risk of spalling (meaning a no spalling occurrence). 427 

• The base value: This would be predicted if there are no factors' values for the current 428 
output (base value: 0.2363 probability of spalling); it is simply the average of factors 429 
for all outcomes.  430 

• The horizontal axis shows the contribution of each value to push the predicted value 431 

and the impact of each factor on the prediction. 432 

 433 

 434 

Fig. 8 Force plot (top) and water fall plot (bottom) of SHAP values for an individual 435 
instance 436 

Figure 8 represents the top factors that significantly affect the model prediction for this specimen. 437 

For example, not including PP fibers in the concrete mix has led to considering the PP fibers as a 438 

positive influencer to spalling occurrence. On the opposite side, moisture content, maximum 439 
exposure temperature, and the heating rate decreased the prediction to be a non-spalling specimen. 440 
Note that for that instance, the maximum exposure temperature is less than the critical limit (500oC 441 
based on our analysis). A heating rate of 2oC/min is almost at the lower critical rate and seems to 442 
be a low rate, which pushes the prediction to a lower likelihood. Also, based on the analysis of this 443 

work (see Fig. 6), the moisture content is considered a direct influencer of spalling when it exceeds 444 
a limit of 2-3%. For this instance, moisture content = 0 (dry specimen) and hence further lowers 445 
the spalling effect. 446 
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4.3.2 LIME local plot 447 

The presented LIME method is applied to the same specimen examined above. To explain this 448 

result, the color indicator shows the variables positively associated with spalling in orange, and 449 
negatively correlated variables are shown in blue. In addition, the most significant variables 450 
affecting the prediction are listed in descending order. However, in local explainability, the order 451 
of those variables might change based on the different samples. 452 

Interpretation: The LIME explainability table and chart show the following:  453 

• The model predicted a value of 0.01 for spalling (meaning a 'non-spalling' occurrence). 454 

• The vertical axis lists the contribution of each parameter to push the predicted value in 455 
descending order. 456 

• Each parameter has two numbers associated with it. The first number shows the critical 457 
range related to the direction of the prediction, and the second shows the contribution of 458 
that parameter. 459 

Comparing the XAI results of both SHAP, and LIME shows an identical response in classifying 460 

the specimen as spalling and no spalling. 461 

 462 
Fig. 9 LIME interpretability visualization for an individual instance 463 

Figure 9 shows the key factors that significantly affect the model prediction for the same instance 464 

as that examined via SHAP. Not including PP fibers in the concrete mix increases the likelihood 465 
of this specimen to spall. In contrast, moisture content, maximum exposure temperature, and the 466 
heating rate lowered the prediction to be a non-spalling specimen. Note, for that instance, the 467 

maximum exposure temperature is less than the critical limit of 500oC (as seen in Fig. 6). A heating 468 
rate of 2oC/min is on the low end as well as the fact that this is a dry specimen both pushed the 469 
prediction towards no spalling.  470 

Comparing the XAI results of both SHAP and LIME was almost identical in classifying the 471 
specimens, which shows that building an AI model with different algorithms is a promising 472 
approach to understanding the spalling history of individual specimens. However, LIME and 473 

SHAP measures have shown slightly different key factors from a local point of view. Please refer 474 
to Appendix B for such comparisons between some of the examined specimens.   475 
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5.0 Comparison between existing spalling theories and XAI findings  476 

This section compares the outcome of the presented XAI analysis against existing theories of fire-477 
induced spalling of concrete. We view this as an exciting exercise since that much of the existing 478 
theories were not examined nor developed from large-scale testing (as opposed to the compiled 479 
640+ tests here). This section also proposes possible recommendations to reduce the spalling 480 
tendency of concrete based on our findings as well as those reviewed from the open literature. 481 

Table 5 demonstrates the outcomes of the literature review of the most important papers on the 482 
fire-induced spalling of concrete.  483 

A look into the parameters selected in the compiled database shows that these parameters can be 484 

grouped under exogenous factors (i.e., maximum exposure temperature and heating rate) and 485 

endogenous factors (such as moisture content, PP fibers quantity, etc.). It is clear that the 486 

exogenous parameters are related to fire and its effect on the heated surfaces. More importantly, 487 

these parameters were positively tied to the event of spalling. 488 
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Table 5 Comparison between existing spalling theories and XAI findings 489 

Factors Kodur [38,72] Kang [5] Khoury [2,56] Hertz [37] Klingsch [43] XAI 

Moisture content 
Higher moisture content levels 

lead to greater spalling. 

The higher the moisture content, the 

greater the spalling risk. 
> 3% is tied to spalling. 

No spalling under 3%, mild 

spalling up to 4% 

Low concrete 

permeability is the reason 

behind the spalling when 

the moisture content is 

presented. 

Risk for spalling 

increases beyond 

2%. 

PP fibers  0.1 – 0.25 per volume. 

The addition of a certain amount can 

prevent spalling even if it's under 

high heating rates 

2 kg/m3 

The addition of PP fibers can 

be effective in mitigating 

spalling of dense concrete. 

2 – 3 kg/m3 

Risk for spalling 

significantly 

reduces beyond 

2.5 kg/m3. 

Maximum exposure 

temperature (oC) 
Positively influences spalling. 

Thermo-mechanical: 430-660oC, 

Thermo-chemical: 700-900oC, 

Thermo-hygral: 220-320oC. 

550-600oC. 
Critical point of steam at 

374oC. 
500oC. 

Risk for spalling 

increases beyond 

500oC. 

Silica fume/binder ratio 

(%) 
Unfavorable in a concrete mix. 

Significant spalling for samples with 

high silica fume (at 0.15). 

Unfavorable in a 

concrete mix. 

Increases the probability of 

explosive spalling. 

Silica fume increases the 

risk of explosive spalling 

significantly since it 

lowers the permeability 

of concrete 

Risk for spalling 

increases beyond 

0.03. 

Heating rate (oC/min) 

The extent of spalling is much 

higher when the specimens are 

exposed to faster heating rates or 

higher fire intensities. 

The chances are higher when heating 

rates are high, but if UHPC is used, 

spalling occurs even under low 

heating rates. 

3oC/min. 

The rapid heating gives rise 

to large temperatures and 

moisture gradients in the 

fire-exposed parts. 

Low heating rates could 

prevent explosive 

spalling, depending on 

the concrete mix. 

Risk for spalling 

increases beyond 

5oC/min. 

Aggregate type 
Carbonate, normal-weight 

aggregates (limestone). 
Preferably not flint. 

Prefer rugged surfaces 

with low thermal 

expansion. 

The effect is local near the 

stone and has, in general, no 

structural significance. 

A lower thermal 

expansion is thought to 

reduce the risk of spalling 

due to a lower level of 

internal stresses. 

- 

Water/binder ratio (%) - - 

Low water/cement ratio 

increases the risk of 

explosive spalling. 

For super dense concrete, the 

crystal water can be 

sufficient for causing an 

explosive spalling. 

High cement content 

influences spalling due to 

the increases of the total 

amount of water added to 

concrete, even at low 

water/cement ratios. 

Low 

water/cement ratio 

increases the risk 

of spalling. 

Cement - 

Limit the amount of cement/unit 

volume of concrete can mitigate the 

thermo-chemical 

Calcium hydroxide is 

not desirable because it 

dissociates at about 

400oC. 

- - 

490 
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The first exogenous factor is the maximum exposure temperature. For example, most of the XAI 491 

model outcomes were found to rely on the 500oC range to indicate the direction of the impact on 492 

the model prediction (i.e., for specimens exposed to temperatures that exceed this limit, the XAI 493 

model noted a trend in which such samples are more likely to spall). This tendency to spall falls 494 

as the maximum exposure temperature reduces. Based on Khoury's [2] findings, the critical 495 

temperature range of spalling is between 550-600oC. Also, Hertz [37] suggested that the critical 496 

point is around 374oC. Kang [5] indicated that thermo-hygral spalling occurs at a temperature 497 

range of 220-320oC, while the thermo-mechanical critical temperature is between 430-660oC, and 498 

thermo-chemical occurs at elevated temperatures above 700oC. It can be seen that different 499 

spalling types might happen at different temperatures; however, based on our analysis and 500 

Klingsch [43], the critical temperature is around 500oC, which is in the range of other theories. 501 

The heating rate is the second exogenous parameter. Our findings suggested that a 5oC/min heating 502 

rate is a critical point that can positively influence spalling, where specimens exposed to a higher 503 

rate are much more likely to spall. This observation agrees with Khoury [2] and Kang [5]. In a 504 

more dedicated work, Cheo et al. [73] examined the effect of low and high heating rates: 1°C/min 505 

and 18oC/min and reported that specimens heated at a lower heating rate have a lower probability 506 

of spalling. 507 

On the other hand, the endogenous factors relate to the mixture proportions, and as such, these are 508 

more likely to be controlled. The above brings an opportunity to explore possible means to control 509 

spalling. We will be focusing our comparison of endogenous parameters on 1) pp fibers quantity, 510 

2) moisture content, 3) silica fume/binder ratio, 4) sand/binder ratio, 5) water/binder ratio, 6) 511 

FA/binder ratio.  512 

PP fibers is considered the most critical endogenous factor in the XAI model. Both local and global 513 

XAI analyses suggest that adding PP fibers can significantly reduce the spalling occurrence. 514 

However, the partial dependence plot showed some fluctuation between the 0.75-0.9 kg/m3 and a 515 

steady trend beyond 2.5 kg/m3 which was pointed out earlier. Khoury [2,56], Kang [5], Hertz [37], 516 

Kodur [38], Klingsch [43], and Jansson [6] explained that the increment of PP fibers would 517 

increase the permeability of concrete, which will effectively mitigate spalling.  518 

Many of the existing theories [34,35,37] show how crucial is the presence of moisture content to 519 

predict the spalling phenomena. Kang [5], Khoury [2], Kodur [38], and Copier [39], in parallel 520 

with the Eurocode [44], agree that the spalling of concrete is much more likely to occur when the 521 

moisture content exceeds 2-3% by weight of concrete. Also, our XAI analysis shows that a range 522 

of 2-3% is the critical range and the partial dependence plots show a sudden change in the direction 523 

between those limits. Comparing the theoretical and XAI model's outcomes seemed to match each 524 

other. This shows our model's accuracy and indicates how critical the moisture content is in 525 

predicting spalling.  526 
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The silica fume/binder ratio is also one of the most important factors in the model. XAI model 527 

predicts that the presence of the silica fume/binder ratio in the concrete mix would influence 528 

spalling; however, after looking at the partial dependence plot, we found that spalling is highly 529 

influenced beyond the range of 0-0.03. Also, both SHAP and LIME tools predicted that the 530 

presence of silica fume constantly pushed the prediction to be a spalling specimen with no specific 531 

value. Hertz [54], Kodur [72], Klingsch [43], Khoury [2], and Kang [5] concluded from the 532 

literature review that concrete mixtures with silica fume have low permeability, which explains 533 

the higher propensity for spalling. 534 

Water- sand- and FA/binder ratios are critical factors significantly affecting the spalling 535 

predictions; using these parameters in a concrete mix will negatively influence the occurrence of 536 

spalling. XAI model shows that the critical limit of sand/binder ratio to include in a concrete mix 537 

is around 1.05-1.15, while for water/binder ratio, the range is slightly under 0.5. Also, FA 538 

binder/ratio is recommended by the partial dependence plots to be above 0.22. Around these ratios, 539 

spalling propensity is likely to decrease, such that higher ratios decrease the occurrence 540 

probability. Khoury [2] and Kodur [38] agree with this ratio's qualitative outcome.  541 

From the outcomes of this paper and the XAI model, we recommend the following values fo the 542 

key parameters involved in concrete mix. 543 

Table 6 Recommended values to minimize spalling. 544 

Factor Recommended value* 

PP fibers quantity (kg/m3) > 2.5 

Moisture content < 2% 

Silica fume/binder ratio (%) 0 

Sand/binder ratio (%) 1.15 

Water/binder ratio (%) > 0.3 

FA/binder ratio (%) > 0.22 
*For the full range, please re-visit Fig. 7. 545 

6.0 Limitations and future work 546 
We acknowledge the existence of other parameters than those examined which could have been 547 
tied to spalling (such as specimen size and configuration, loading level, heating duration, aggregate 548 

type, permeability and pore size, use of different fiber types such as PE or nylon, etc.). Admittedly, 549 
such factors were not examined in this study as our analysis primarily focused on parameters 550 
associated with raws often utilized in concrete mixtures as well as small concrete specimens (i.e., 551 

cubes and cylinders). We hope to be able to explore the influence of other factors and size effect 552 
in large load bearing members in a future work. We also invite the readers of this work to further 553 
expand our analysis (by leveraging the attached XAI Python code) and seek companion research 554 
directions to that presented in this study.  555 
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7.0 Conclusions 556 

This paper presents a new perspective on fire-induced spalling in concrete by creating an XAI 557 

model. This model was validated and achieved > 92% accuracy. Then, the model was augmented 558 

with explainability measures (SHAP and LIME) to uncover new insights into the phenomenon of 559 

spalling. The main conclusions from our analysis are summarized as follows. 560 

1. We identified two types of factors that can influence spalling, exogenous (i.e., maximum 561 
exposure temperature and heating rate) and endogenous factors (such as moisture content, 562 
PP fibers quantity, etc.). 563 

2. The top positive influencers of fire-induced spalling are moisture content, maximum 564 
exposure temperature, silica fume/binder ratio, and heating rate. 565 

3.  The top negative influencers of fire-induced spalling are pp fibers quantity, sand/binder 566 

ratio, water/binder ratio, and FA/binder ratio. 567 
4. The addition of PP fibers to the concrete mix can reduce spalling tendency (especially in 568 

mixtures of more than 2.5 kg/m3). 569 
5. Spalling is negatively proportional to the sand/binder ratio, water/binder ratio, and 570 

FA/binder ratio; when their presence increases, the spalling decreases. 571 

6. The presence of silica fume/binder ratios increases the probability of spalling. Also, 572 
exposure to temperatures larger than 500oC and/or heating rates larger than 5oC/min 573 

increases spalling. 574 
7. Moisture content is considered a key factor affecting the spalling of concrete. The critical 575 

range is between (2-3%) and is significantly influencing spalling of concrete. 576 
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Appendix A 577 

The proposed XAI model is provided herein. 578 

from xgboost import XGBClassifier 579 
import xgboost as xgb 580 
import seaborn as sns 581 
import pandas as pd 582 
import numpy as np 583 
from matplotlib import pyplot 584 
from sklearn.model_selection import train_test_split 585 
from sklearn.metrics import roc_curve 586 
from sklearn.feature_selection import mutual_info_classif 587 
from sklearn.metrics import confusion_matrix,classification_report 588 
from sklearn.metrics import accuracy_score 589 
from sklearn.metrics import balanced_accuracy_score, roc_auc_score, make_scorer 590 
from sklearn.metrics import plot_confusion_matrix 591 
from sklearn.model_selection import StratifiedKFold 592 
from sklearn.model_selection import cross_val_score 593 

 594 

In [2]: 595 
fire=pd.read_csv('database.csv') 596 
 597 
fire 598 

Out[2]: 599 
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O
u

tp
u

t 

0 0.273 2.000 1.049 101.0 0.049 1034 0.0 7.0 0.25 0.0 0.0 0.0 0 0.0 0.0 0 1 

1 0.273 2.000 1.049 101.0 0.049 1034 0.0 14.0 0.25 0.0 0.0 0.0 0 0.0 0.0 0 1 

2 0.300 2.000 1.033 101.0 0.049 1034 0.0 20.0 0.25 0.0 0.0 0.0 0 0.0 0.0 0 1 

3 0.218 1.374 1.199 101.0 0.047 1034 0.0 7.0 0.25 0.0 0.0 0.0 0 0.0 0.0 0 1 

4 0.218 1.374 1.199 101.0 0.043 1034 0.0 7.0 0.25 0.0 0.0 0.0 0 0.0 0.0 0 1 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

64

1 
0.200 0.000 1.040 15.0 0.063 800 0.2 0.6 0.00 0.0 1.0 36.0 6 0.0 0.0 0 1 

64

2 
0.200 0.000 1.040 15.0 0.065 800 0.2 0.6 0.00 0.0 1.5 36.0 6 0.0 0.0 0 1 

64

3 
0.200 0.000 1.040 15.0 0.066 800 0.2 0.6 0.00 0.0 2.0 36.0 6 0.0 0.0 0 1 

64

4 
0.200 0.000 1.040 15.0 0.064 800 0.2 0.6 0.00 0.0 2.5 36.0 6 0.0 0.0 0 1 

64

5 
0.200 0.000 1.040 15.0 0.066 800 0.2 0.6 0.00 0.0 3.0 36.0 6 0.0 0.0 0 0 

 600 

646 rows × 17 columns 601 

In [3]: 602 
Statistical_data=fire.agg( 603 
    { 604 
"Water/binder ratio (%)":["min", "max", "median", "skew","std","mean" ], 605 
"Aggregate/binder ratio (%)":["min", "max", "median", "skew", "std","mean" ], 606 
"Sand/binder ratio (%)":["min", "max", "median", "skew", "std","mean" ], 607 
"Heating rate (C/min)":["min", "max", "median", "skew", "std","mean" ],         608 
"Moisture content":["min", "max", "median", "skew", "std","mean" ], 609 
"Maximum exposure temperature (C)":["min", "max","median","skew","std","mean"], 610 
"Silica fume/binder ratio (%)":["min", "max", "median", "skew", "std","mean" ], 611 
"Aggregate size (mm)":["min", "max", "median", "skew", "std","mean" ], 612 
"GGBS/binder ratio (%)":["min", "max", "median", "skew", "std","mean" ], 613 
"FA/binder ratio (%)":["min", "max", "median", "skew", "std","mean" ], 614 
"PP fiber quantity (kg/m3)":["min", "max", "median", "skew", "std","mean" ], 615 
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"PP fiber diameter(um)":["min", "max", "median", "skew", "std","mean" ], 616 
"PP fiber length (mm)":["min", "max", "median", "skew", "std","mean" ], 617 
"Steel fiber quantity (kg/m3)":["min", "max", "median", "skew", "std","mean" ], 618 
"Steel fiber diameter(mm)":["min", "max", "median", "skew", "std","mean" ], 619 
"Steel fiber length (mm)":["min", "max", "median", "skew", "std","mean" ], 620 
    } 621 
) 622 
 623 
Statistical_data 624 

Out[3]: 625 
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min 0.115000 0.000000 0.345000 0.250000 0.000000 100.000000 0.000000 0.120000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

max 0.610000 3.952000 3.380000 240.000000 0.073000 1200.000000 0.232000 32.000000 0.458000 0.700000 14.560000 100.000000 15.000000 243.000000 1.000000 60.000000 

median 0.269000 1.278000 1.222000 7.000000 0.030000 600.000000 0.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

skew 0.930188 0.432825 1.343488 2.934597 0.125288 0.133034 0.703968 0.519470 2.536328 3.725072 3.496500 2.018732 1.151806 1.350982 2.113286 2.378974 

std 0.120693 1.123410 0.553301 36.926746 0.022791 234.322744 0.088351 7.601413 0.095737 0.112682 1.912621 17.184847 4.427905 76.755249 0.206403 10.250184 

mean 0.290080 1.150981 1.404385 20.845201 0.027529 561.281734 0.070331 8.255975 0.038320 0.040319 0.966749 11.433746 3.123839 51.482972 0.128854 6.300310 

 626 

In [4]: 627 
x=fire.drop(['Output'],axis=1) 628 
y=fire['Output'] 629 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=111) 630 

In [5]: 631 
for i, col in enumerate(fire.columns): 632 
    pyplot.figure(i) 633 
    sns.histplot(fire[col]) 634 

 635 

 636 

 637 
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 648 

 649 

 650 

 651 
In [6]: 652 

xgbc=xgb.XGBClassifier(objective ='binary:logistic' ,missing=1,seed=42  653 
                       ,learning_rate = 0.05 , max_depth = 3) 654 
xgbc.fit(x_train,y_train,verbose=True,early_stopping_rounds=50, 655 
         eval_metric='aucpr',eval_set=[(x_test,y_test)]) 656 
predictions = xgbc.predict(x_test)    657 
kfold = StratifiedKFold(n_splits=10, random_state=7,shuffle=True) 658 
results = cross_val_score(xgbc, x, y, cv=kfold) 659 
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100)) 660 

[0] validation_0-aucpr:0.70297 661 
[1] validation_0-aucpr:0.70297 662 
[2] validation_0-aucpr:0.74610 663 
[3] validation_0-aucpr:0.83571 664 
[4] validation_0-aucpr:0.83334 665 
[5] validation_0-aucpr:0.84276 666 
[6] validation_0-aucpr:0.85755 667 
[7] validation_0-aucpr:0.84832 668 
[8] validation_0-aucpr:0.85179 669 
[9] validation_0-aucpr:0.85191 670 
[10] validation_0-aucpr:0.85738 671 
[11] validation_0-aucpr:0.85867 672 
[12] validation_0-aucpr:0.86494 673 
[13] validation_0-aucpr:0.86189 674 
[14] validation_0-aucpr:0.86285 675 
[15] validation_0-aucpr:0.86467 676 
[16] validation_0-aucpr:0.86886 677 
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[17] validation_0-aucpr:0.87422 678 
[18] validation_0-aucpr:0.88066 679 
[19] validation_0-aucpr:0.87465 680 
[20] validation_0-aucpr:0.88346 681 
[21] validation_0-aucpr:0.88151 682 
[22] validation_0-aucpr:0.88042 683 
[23] validation_0-aucpr:0.88075 684 
[24] validation_0-aucpr:0.88423 685 
[25] validation_0-aucpr:0.88324 686 
[26] validation_0-aucpr:0.88595 687 
[27] validation_0-aucpr:0.88528 688 
[28] validation_0-aucpr:0.88997 689 
[29] validation_0-aucpr:0.88982 690 
[30] validation_0-aucpr:0.89384 691 
[31] validation_0-aucpr:0.89392 692 
[32] validation_0-aucpr:0.89683 693 
[33] validation_0-aucpr:0.89732 694 
[34] validation_0-aucpr:0.90004 695 
[35] validation_0-aucpr:0.90253 696 
[36] validation_0-aucpr:0.90414 697 
[37] validation_0-aucpr:0.90404 698 
[38] validation_0-aucpr:0.90708 699 
[39] validation_0-aucpr:0.90555 700 
[40] validation_0-aucpr:0.90795 701 
[41] validation_0-aucpr:0.90796 702 
[42] validation_0-aucpr:0.90886 703 
[43] validation_0-aucpr:0.91232 704 
[44] validation_0-aucpr:0.90999 705 
[45] validation_0-aucpr:0.91347 706 
[46] validation_0-aucpr:0.91142 707 
[47] validation_0-aucpr:0.91566 708 
[48] validation_0-aucpr:0.91499 709 
[49] validation_0-aucpr:0.91832 710 
[50] validation_0-aucpr:0.92337 711 
[51] validation_0-aucpr:0.92183 712 
[52] validation_0-aucpr:0.92448 713 
[53] validation_0-aucpr:0.92428 714 
[54] validation_0-aucpr:0.92148 715 
[55] validation_0-aucpr:0.92306 716 
[56] validation_0-aucpr:0.92386 717 
[57] validation_0-aucpr:0.92858 718 
[58] validation_0-aucpr:0.92860 719 
[59] validation_0-aucpr:0.93117 720 
[60] validation_0-aucpr:0.93456 721 
[61] validation_0-aucpr:0.93367 722 
[62] validation_0-aucpr:0.93503 723 
[63] validation_0-aucpr:0.93172 724 
[64] validation_0-aucpr:0.93481 725 
[65] validation_0-aucpr:0.93518 726 
[66] validation_0-aucpr:0.93658 727 
[67] validation_0-aucpr:0.93680 728 
[68] validation_0-aucpr:0.93404 729 
[69] validation_0-aucpr:0.93882 730 
[70] validation_0-aucpr:0.94006 731 
[71] validation_0-aucpr:0.93848 732 
[72] validation_0-aucpr:0.93876 733 
[73] validation_0-aucpr:0.94026 734 
[74] validation_0-aucpr:0.94022 735 
[75] validation_0-aucpr:0.93997 736 
[76] validation_0-aucpr:0.93832 737 
[77] validation_0-aucpr:0.94102 738 
[78] validation_0-aucpr:0.94168 739 
[79] validation_0-aucpr:0.94359 740 
[80] validation_0-aucpr:0.94418 741 
[81] validation_0-aucpr:0.94495 742 
[82] validation_0-aucpr:0.94636 743 
[83] validation_0-aucpr:0.94617 744 
[84] validation_0-aucpr:0.94617 745 
[85] validation_0-aucpr:0.94617 746 
[86] validation_0-aucpr:0.94636 747 
[87] validation_0-aucpr:0.94782 748 
[88] validation_0-aucpr:0.94856 749 
[89] validation_0-aucpr:0.94732 750 
[90] validation_0-aucpr:0.94732 751 
[91] validation_0-aucpr:0.94732 752 
[92] validation_0-aucpr:0.94887 753 
[93] validation_0-aucpr:0.94826 754 
[94] validation_0-aucpr:0.95129 755 
[95] validation_0-aucpr:0.95190 756 
[96] validation_0-aucpr:0.95129 757 
[97] validation_0-aucpr:0.94883 758 
[98] validation_0-aucpr:0.94975 759 
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[99] validation_0-aucpr:0.95032 760 
Accuracy: 88.09% (2.64%) 761 

In [7]: 762 
class_names = ['no spalling ', 'spallling'] 763 
disp = plot_confusion_matrix(xgbc, x_test, y_test, display_labels=class_names, cmap=pyplot.cm.Blues, 764 
xticks_rotation='vertical') 765 
pyplot.title('Testing set') 766 
print (classification_report(y_test,predictions)) 767 

              precision    recall  f1-score   support 768 
 769 
           0       0.90      0.97      0.94       135 770 
           1       0.92      0.76      0.83        59 771 
 772 
    accuracy                           0.91       194 773 
   macro avg       0.91      0.87      0.88       194 774 
weighted avg       0.91      0.91      0.90       194 775 
 776 

 777 
In [8]: 778 

class_names = ['no spalling ', 'spallling'] 779 
disp = plot_confusion_matrix(xgbc, x_train, y_train, display_labels=class_names,colorbar=True, cmap=pyplot.cm.Blues, 780 
xticks_rotation='vertical') 781 
pyplot.title('Training set') 782 

Out[8]: 783 

 784 
In [9]: 785 

r_auc=roc_auc_score(y_test,predictions) 786 
r_auc 787 

Out[9]: 788 
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0.866541117388575 789 

In [10]: 790 
yhat = xgbc.predict_proba(x_test) 791 
 792 
# retrieve just the probabilities for the positive class 793 
pos_probs = yhat[:, 1] 794 
# plot no skill roc curve 795 
pyplot.plot([0, 1], [0, 1], linestyle='--') 796 
# calculate roc curve for model 797 
fpr, tpr, _ = roc_curve(y_test, pos_probs) 798 
# plot model roc curve 799 
pyplot.plot(fpr, tpr, marker='.', label='AUC=0.866') 800 
# axis labels 801 
pyplot.xlabel('False Positive Rate') 802 
pyplot.ylabel('True Positive Rate') 803 
# show the legend 804 
pyplot.legend() 805 
pyplot.title('Testing set') 806 
# show the plot 807 
pyplot.show() 808 

 809 
In [11]: 810 

yhat = xgbc.predict_proba(x_train) 811 
 812 
# retrieve just the probabilities for the positive class 813 
pos_probs = yhat[:, 1] 814 
# plot no skill roc curve 815 
pyplot.plot([0, 1], [0, 1], linestyle='--') 816 
# calculate roc curve for model 817 
fpr, tpr, _ = roc_curve(y_train, pos_probs) 818 
# plot model roc curve 819 
pyplot.plot(fpr, tpr, marker='.', label='AUC=0.907') 820 
# axis labels 821 
pyplot.xlabel('False Positive Rate') 822 
pyplot.ylabel('True Positive Rate') 823 
# show the legend 824 
pyplot.legend() 825 
pyplot.title('Training set') 826 
# show the plot 827 
pyplot.show() 828 
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 829 
In [12]: 830 

importances = xgbc.feature_importances_ 831 
indices = np.argsort(importances) 832 
features = x.columns 833 
pyplot.title('Feature Importances') 834 
pyplot.barh(range(len(indices)), importances[indices], color='g', align='center') 835 
pyplot.yticks(range(len(indices)), [features[i] for i in indices]) 836 
pyplot.xlabel('Relative Importance') 837 
pyplot.show() 838 

 839 
In [13]: 840 

l=fire.corr() 841 

In [14]: 842 
sns.heatmap(l, annot=True) 843 
sns.set(rc = {'figure.figsize':(22,12)}) 844 
pyplot.title("Pearson Correlation") 845 
 846 
pyplot.show() 847 
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 848 
In [15]: 849 

def display_correlation(df): 850 
    r = df.corr(method="spearman") 851 
    pyplot.figure(figsize=(22,12)) 852 
    heatmap = sns.heatmap(df.corr(), vmin=-1,  853 
                      vmax=1, annot=True) 854 
    pyplot.title("Spearman Correlation") 855 
    return(r) 856 
 857 
r_simple=display_correlation(l) 858 

 859 
In [16]: 860 

import shap 861 
shap.initjs() 862 
 863 
explainer = shap.TreeExplainer(xgbc) 864 
shap_values = explainer.shap_values(x_test) 865 
shap.summary_plot(shap_values, x_test, plot_type="bar") 866 

 867 
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 868 
In [17]: 869 

shap.summary_plot(shap_values, x_test,show=False) 870 
pyplot.gcf().axes[-1].set_box_aspect(50) 871 
pyplot.gcf().axes[-1].set_aspect(100) 872 
pyplot.gcf().axes[-1].set_box_aspect(100) 873 

 874 
In [18]: 875 

xgb_binary_shap_values = explainer(x_test) 876 

 877 

In [19]: 878 
 879 
def xgb_shap_transform_scale(original_shap_values, Y_pred, which): 880 
    from scipy.special import expit 881 
     882 
    #Compute the transformed base value, which consists in applying the logit function to the base value 883 
    from scipy.special import expit #Importing the logit function for the base value transformation 884 
    untransformed_base_value = original_shap_values.base_values[-1] 885 
    886 
    #Computing the original_explanation_distance to construct the distance_coefficient later on 887 
    original_explanation_distance = np.sum(original_shap_values.values, axis=1)[which] 888 
     889 
    base_value = expit(untransformed_base_value ) # = 1 / (1+ np.exp(-untransformed_base_value)) 890 
 891 
    #Computing the distance between the model_prediction and the transformed base_value 892 
    distance_to_explain = Y_pred[which] - base_value 893 
 894 
    #The distance_coefficient is the ratio between both distances which will be used later on 895 
    distance_coefficient = original_explanation_distance / distance_to_explain 896 
 897 
    #Transforming the original shapley values to the new scale 898 
    shap_values_transformed = original_shap_values / distance_coefficient 899 
 900 
    #Finally resetting the base_value as it does not need to be transformed 901 
    shap_values_transformed.base_values = base_value 902 
    shap_values_transformed.data = original_shap_values.data 903 
     904 
    #Now returning the transformed array 905 
    return shap_values_transformed   906 

In [20]: 907 
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obs =9 908 
 909 
print("The prediction is ", predictions[obs]) 910 
shap_values_transformed = xgb_shap_transform_scale(xgb_binary_shap_values, predictions, obs) 911 
shap.plots.waterfall(shap_values_transformed[obs]) 912 
shap.force_plot(shap_values_transformed[obs]) 913 

The prediction is  0 914 

 915 
Out[20]: 916 

 917 
In [21]: 918 

obs =1 919 
 920 
print("The prediction is ", predictions[obs]) 921 
shap_values_transformed = xgb_shap_transform_scale(xgb_binary_shap_values, predictions, obs) 922 
shap.plots.waterfall(shap_values_transformed[obs]) 923 
shap.force_plot(shap_values_transformed[obs]) 924 

The prediction is  0 925 

 926 
Out[21]: 927 

In [22]: 928 
obs =0 929 
 930 
print("The prediction is ", predictions[obs]) 931 
shap_values_transformed = xgb_shap_transform_scale(xgb_binary_shap_values, predictions, obs) 932 
shap.plots.waterfall(shap_values_transformed[obs]) 933 
shap.force_plot(shap_values_transformed[obs]) 934 

The prediction is  1 935 

 936 
Out[22]: 937 

In [23]: 938 
obs =20 939 
 940 
print("The prediction is ", predictions[obs]) 941 
shap_values_transformed = xgb_shap_transform_scale(xgb_binary_shap_values, predictions, obs) 942 
shap.plots.waterfall(shap_values_transformed[obs]) 943 
shap.force_plot(shap_values_transformed[obs]) 944 

The prediction is  1 945 
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 946 
Out[23]: 947 

In [24]: 948 
obs =21 949 
 950 
print("The prediction is ", predictions[obs]) 951 
shap_values_transformed = xgb_shap_transform_scale(xgb_binary_shap_values, predictions, obs) 952 
shap.plots.waterfall(shap_values_transformed[obs]) 953 
shap.force_plot(shap_values_transformed[obs]) 954 

The prediction is  0 955 

 956 
Out[24]: 957 

 958 

In [25]: 959 
import lime 960 
import lime.lime_tabular 961 
from lime import lime_tabular 962 

In [26]: 963 
explainerL = lime_tabular.LimeTabularExplainer( 964 
    training_data=np.array(x), 965 
    feature_names=x.columns, 966 
    class_names=['Not spalling', 'Spalling'], 967 
    mode='classification') 968 

In [27]: 969 
exp = explainerL.explain_instance( 970 
    data_row=x.iloc[384],  971 
    predict_fn=xgbc.predict_proba 972 
) 973 
#exp.save_to_file('temp.html') 974 
exp.show_in_notebook(show_table=True) 975 

 976 
 977 

 978 
 979 

In [28]: 980 
exp = explainerL.explain_instance( 981 
    data_row=x.iloc[337],  982 
    predict_fn=xgbc.predict_proba 983 
) 984 
#exp.save_to_file('temp.html') 985 
exp.show_in_notebook(show_table=True) 986 

 987 
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 988 
In [29]: 989 

exp = explainerL.explain_instance( 990 
    data_row=x.iloc[39],  991 
    predict_fn=xgbc.predict_proba 992 
) 993 
#exp.save_to_file('temp.html') 994 
exp.show_in_notebook(show_table=True) 995 

 996 

 997 

 998 

 999 

 1000 

In [30]: 1001 
exp = explainerL.explain_instance( 1002 
    data_row=x.iloc[11],  1003 
    predict_fn=xgbc.predict_proba 1004 
) 1005 
#exp.save_to_file('temp.html') 1006 
exp.show_in_notebook(show_table=True) 1007 

 1008 

 1009 

 1010 

 1011 

 1012 

In [31]: 1013 
exp = explainerL.explain_instance( 1014 
    data_row=x.iloc[353],  1015 
    predict_fn=xgbc.predict_proba 1016 
) 1017 
#exp.save_to_file('temp.html') 1018 
exp.show_in_notebook(show_table=True) 1019 

 1020 

 1021 

 1022 

In [32]: 1023 
import matplotlib.pyplot as plt 1024 
from sklearn.inspection import partial_dependence 1025 
from sklearn.inspection import PartialDependenceDisplay 1026 
 1027 
features = ['Moisture content', 1028 

https://doi.org/10.1016/j.conbuildmat.2022.128648
https://doi.org/10.1016/j.conbuildmat.2022.128648


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.conbuildmat.2022.128648.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Verifying Domain Knowledge and Theories on Fire-induced Spalling of Concrete through eXplainable Artificial 

Intelligence. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2022.128648.      

42 
 

    'Water/binder ratio (%)', 1029 
    'Sand/binder ratio (%)', 1030 
    'Heating rate (C/min)', 1031 
            'Maximum exposure temperature (C)', 1032 
    'Silica fume/binder ratio (%)', 1033 
            'FA/binder ratio (%)', 1034 
    'PP fiber quantity (kg/m3)', 1035 
            1036 
             1037 
            ] 1038 
display = PartialDependenceDisplay.from_estimator( xgbc,x_test, features, kind="both", grid_resolution=20, 1039 
random_state=1) 1040 
     1041 
 1042 
for i in range(display.lines_.shape[0]): 1043 
               display.lines_[0,i,-1].set_color('Green') 1044 
               display.axes_[3, i].legend() 1045 

 1046 
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Appendix B 1047 

This section compares SHAP and LIME predictions for four random specimens A-F. 1048 

Specimen A [No Spalling] 1049 

 1050 

Specimen B [Spalling] 1051 

 1052 

Specimen C [Spalling] 1053 

 1054 

 1055 
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