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Synopsis  8 

Artificial intelligence (AI) has been established as a universal language for solving science and 9 

engineering problems. Despite the rise of big data, the success of AI in parallel fields, and exciting 10 

works published at this frontier, some in the civil engineering community tie AI to a mystique 11 

stigma. And yet, there is also ever-growing inertia to embrace AI fully. The mystique of AI arises 12 

because 1) AI is not typically taught in a traditional civil engineering curriculum, 2) the majority 13 

of civil engineers remain appliers (as opposed to creators) of AI, and 3) commonly adopted AI 14 

algorithms leverage blackbox methods – the opposite to that commonly accepted in the civil 15 

engineering domain. We write this opinion piece with the aim of presenting a holistic look into the 16 

dos and don’ts of adopting AI into civil engineering.  17 
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discovery. 19 

Do educate yourself on AI. 20 

Civil engineers are public servants with a duty for lifelong learning. Such a duty does not end by 21 

attaining a college degree but stretches beyond such a degree. A civil engineering curriculum 22 

doesn’t and can’t cover every aspect a civil engineer needs to learn, but rather covers the 23 

fundamentals that such an individual is likely to need during their tenure. While a civil engineering 24 

track of study rarely covers AI, AI-based solutions are being integrated into various civil 25 

engineering areas such as surveying, construction management, structural design, etc. A keen eye 26 

to the above can see a growing disconnect between our curriculum, academia, and industry. Given 27 

the rapid advancements in AI and the new opportunities it continues to bring, perhaps this 28 

disconnect is bound to disrupt our often calm, traditional, and steady discipline. Thus, the notion 29 

that AI is not an integrated component of our classical curriculum does not justify reticence to 30 

learn (or at the very least get familiar with) AI, especially now, where educational materials can 31 

be found on-demand and with ease.  32 

This brings us to the following question, what is AI? Well, AI is a technology that enables 33 

machines to simulate human intelligence and perform tasks commonly undertaken by humans. AI 34 

has subfields emerge, specifically machine learning (ML) and deep learning (DL). In ML, 35 

machines can automatically, and without explicit programming, learn from data to extract hidden 36 

patterns. DL falls under ML and is dedicated to creating a specialized form of multi-layered 37 

algorithms (or networks) that resemble the brain. The definitions of AI, ML, and DL do not 38 

specifically mention algorithmic details nor how these technologies practically relate to civil 39 

engineering. The same also infers that such technologies are primarily driven by data. Hence, a 40 
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question may arise. How can we infuse our prior knowledge of a system (say, civil engineering 41 

judgment) with AI technologies? Here is where physics-informed AI or mechanistic AI becomes 42 

effective and where we can enforce physical laws or ensure that a model satisfies such laws. 43 

Finally, we have a promising class of AI, referred to as causal AI. In causal AI, a model can be 44 

used to pinpoint the causes of a phenomenon, deliver insights, or simply be able to reason – all of 45 

which are features that other AI technologies fail to provide. From a civil engineering perspective, 46 

AI can be grouped under supervised learning (for regression and classification problems) and semi- 47 

and unsupervised learning (for clustering/labeling/control problems). Thus, to properly navigate 48 

the above technologies, we first need to identify a problem type and objective(s). 49 

Do be curious and ask, how can AI help me? 50 

Engineers are curious by nature. We are trained to solve problems using logical and mathematical 51 

procedures. We also devise experiments or develop numerical models to examine or predict 52 

phenomena. In this pursuit, we generate data and document observations – many of which remain 53 

shelved away in reports and publications. A question then arises, did we fully utilize such data? 54 

Perhaps adopting a new method of investigation can identify hidden patterns that may have fallen 55 

between the cracks of idealizations and simplifying assumptions built into traditional methods 56 

(e.g., statistical methods, and especially when our data does not truly satisfy principles of statistics) 57 

(Rahmanpanah et al., 2020; Tran-Ngoc et al., 2020). The open literature continues to document 58 

scholarly works where predictions from AI methods outperform those obtained from building code 59 

provisions and statistical methods. Given the power of AI, shouldn’t we use these new tools 60 

because they provide superior predictions and are built from data pools that are often more modern, 61 

diverse, and larger than those used in deriving codal provisions?1 So, how can AI help a civil 62 

engineer? Well, many of our problems resemble a closed-loop system that is primed for 63 

automation. In such a system, a number of parameters are seen to associate with an outcome (or 64 

response). If we collect enough data on parameters and responses, then we could potentially better 65 

understand our problems and create/optimize novel solutions to overcome such problems2. The 66 

above is often defined as a data-driven approach to solving problems, i.e., arriving at answers by 67 

examining data. But, what about other problems that do not resemble a closed-loop system? 68 

Presumably those with an artistic or creative view. Current and future advancements in AI are 69 

leading to AI systems capable of maneuvering such problems. Let us keep an open mind for now. 70 

In a way, and on a philosophical level, learning AI can be an asset to our engineers. 71 

Do ask if you need AI for a given problem  72 

Just because we have a new tool (in this case, AI) does not mean it is suited for all problems. 73 

Choosing to use AI is just like selecting other tools; the answer is based on the user’s competency, 74 

preferences, past experience, and established professional practices. We tend to choose what we 75 

are familiar with and comfortable using. For example, and fundamentally speaking, we use codal 76 

 
1 An answer (or debate) to the above is likely to contain scientific, engineering, and philosophical arguments.  
2 An argument can be made for simply coding the relationship between parameters and response(s). However, coding 

requires knowledge of such a relationship (which is often resembled in a codal procedure or expression(s)). Thus, this 

argument can be countered by the superior performance of AI the associated use of lager data sets. 
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provisions because we trust such provisions, and we know that they are derived via collective and 77 

continuing efforts. We also use alternative tools when a previous approach fails to answer our 78 

inquiry or when we want to test the merit of the earlier approach3. As a profession, civil 79 

engineering has a rich history of appropriately applying simplifying assumptions to create elegant 80 

and efficient approaches to problems. Oftentimes these approaches are all that is needed. While 81 

AI may provide us with novel means to solve our problems, let us not be too hasty with this novelty 82 

and bypass classical civil engineering and statistical principles. Be intelligent in leveraging AI, 83 

and do not forget your roots. 84 

Do remember the implication(s) of data-driven AI vs. causal AI. 85 

Data-driven approaches can come in handy since we often have plenty of data (thanks to the rise 86 

of big data and over a century of engineering experiments and publications) and access to high 87 

computing stations. This can result in the development of AI surrogates that can help us overcome 88 

bottlenecks associated with testing and simulations. There are a number of assumptions to data-89 

driven approaches; most notably, 1) such approaches are tied to having comprehensive datasets, 90 

and 2) such data seem to repeat consistently. A skeptic may ask, do we have access or capability 91 

to create comprehensive datasets? And if so, how can we be sure of the quality and 92 

comprehensiveness of such datasets? Complete answers to these questions are beyond the scope 93 

of this piece; however, a rational argument for the sake of this discussion would be to assume that 94 

the datasets we have are comprehensive enough. This is a common assumption that we already 95 

make when choosing statistical methods and when analyzing our experiments (which traditionally 96 

comprise a smaller number of specimens). However, statistical methods are often constrained with 97 

assumptions (regarding the range of applicability of the methods themselves or 98 

type/quality/distribution of data, etc.), and we may not be able to arrive at suitable solutions4.  99 

A timely alternative would be to explore AI models. Despite being blackboxes, AI models have 100 

been shown to perform well and can arrive at predictions with high accuracy that may far exceed 101 

that obtained from statistics and provisions from our codes and standards. However, we do not 102 

know how such models work, nor how they were able to arrive at such predictions (Rudin, 2019). 103 

So, this leaves us with a tool that seems to work well on our assumed-to-be comprehensive enough 104 

dataset, but we do not know how the tool works. Would you trust such a tool?5 The point to take 105 

home is that we need to be cognizant of our methods of investigation and be able to critique the 106 

limits and merits of such methods. In some cases, data-driven blackbox AI may be the only 107 

available option, or it may be used to supplement traditional methods. In some instances, blackbox 108 

AI and real-world big data have been used to confirm results observed from limited field studies, 109 

laboratory tests, and engineering-based parametric models (Jonnalagadda et al., 2016). The 110 

dilemma of blackbox models can be overcome by physics-informed and causal AI (as these 111 

continue to flourish). While physics-informed AI adds constraints to the AI solution that mandate 112 

compliance with established physical laws and first principles, causal AI goes beyond that to get 113 

 
3 Let us acknowledge that other reasons may exist (i.e., need to publish novel scholarly works, etc.).  
4 Please refer to (Bzdok et al., 2018) for a detailed discussion on some of the limitations of statistical methods. 
5 The same can also be said to trusting an unknown version of an expression or an untested FE model. 
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to the cause of a phenomenon. While data-driven AI has helped us to solve some problems, 114 

physics-informed AI can further help us with more problems; casual AI is likely to help in many, 115 

if not all, problems. Why? Because in causal AI we are unlocking the true mechanisms that 116 

genuinely govern our phenomena. Remember, each approach has its merits, uses, and 117 

applications6.  118 

Do be careful of false causality and do not exaggerate the outcome of explainability methods. 119 

Oftentimes poorly prepared datasets or those with loose/co-dependent/confounding features can 120 

lead to “artifacts” that may deceive AI models into thinking that such features are essential 121 

(Papadimitriou & Garcia-Molina, 2011). In such instances, the same features may also mislead the 122 

AI user into thinking that such features are important, especially users with limited experience 123 

(remember that at this point in time, civil engineers are likely to be appliers of AI). This may lead 124 

to poor decision making, which can come at a high cost in certain scenarios. Similarly, augmenting 125 

traditional AI models with explainability or interpretability7 measures (such as Shapely values or 126 

partial dependence plots, etc.), while admirable, is still constrained to understanding the model’s 127 

behavior across its dataset and possibly from a data-driven perspective that may or may not agree 128 

with our prior engineering knowledge, and most importantly may not convey the actual 129 

relationships used in attaining such predictions. Remember that explainability methods may not 130 

reveal hidden or mechanistic causality as proper causal AI models (Pearl, 2009). Still, augmenting 131 

blackbox models with such methods is still an improvement over that of pure blackbox models 132 

since explainability/interpretability methods may unveil or pinpoint new information that could 133 

form the foundation for new knowledge or verify existing knowledge (Naser, 2021; Tahmassebi, 134 

Motamedi, Alavi, & Gandomi, 2021). 135 

 
6 From an academic view, this piece does favor casual models. Our argument is simple, once we identify the driving 

mechanism(s) governing a phenomenon, then we know all the ins and outs of such a phenomenon and unlock valuable 

knowledge. However, causal models are in their early stages, and we remain aware of the usefulness and wide 

applications of data-driven and physics-informed approaches – many of which we have used in our publications. In 

other words, there is a room and place for each and all approaches.  
7 At this point in time, explainability and interpretability are often used interchangeably. Simply put, when a blackbox 

model is augmented with a measure(s) that allow us to peek through its internal mechanisms to understand how it 

works, such a model is referred to as explainable and/or interpretable model (note: other terms may include 

eXplainable AI (XAI), glassbox, whitebox or transparent AI and a further discission/debate on scientific, engineering, 

and philosophical views to explainability and interpretability can be found elsewhere (Adadi & Berrada, 2018; Barredo 

Arrieta et al., 2020)). From an engineering view, we would like AI models that can articulate how a prediction is 

arrived at, and what are the mechanisms that the model uses to tie the inputs to such a prediction. Knowing so will 

allow us to figure out if such mechanisms agree with out physics principles and engineering judgement vs. arriving at 

a prediction via pure data association. A suitable AI model would have the properties of an equation. We know how 

an equation is derived, we know the assumptions used to derive such an equation and we also know how the input 

interacts without each other to arrive at a prediction. Such a model would be easy to breakdown and debug. If we can 

see how the model works, and understand why it works, then we can start to trust such model and perhaps draw new 

inferences with confidence. Note that the above argument on the resemblance of an AI model to an equation is also 

equivalent to that of a FE software.  
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Do remember that the devil is in the data (and in the details too). 136 

Most of us are familiar with the finite element (FE) method, wherein FE numerical models are 137 

developed to simulate physical phenomena (say, to predict the deflection of a loaded beam). A 138 

typical FE model primarily comprises the geometrical model that reflects the beam's geometry and 139 

possible movements and a material model that conveys the behavior of the material of such a beam. 140 

Thus, for the same geometry, a modeler can achieve different deflection responses if the material 141 

model is varied between concrete, steel, and timber. From this perspective, the FE model (as a 142 

model) does not recognize that we are trying to simulate a beam, let alone a specific type of a beam 143 

with particular material properties, but rather it takes our inputs and solves for deflections. The 144 

same is also true in the case of AI models. The solution is only as good as the data and the details 145 

upon which the AI model is based. It is naïve to assume an AI model’s quality of predictions 146 

exceeds the quality of its source data or the logic used to build it8. Remember that there is little 147 

room to finetune the setting of a given algorithm to improve its prediction capability, and there is 148 

significant room to enhance data quality and a logical path used to build the AI model. Do go over 149 

some of the classical and recent works that provide rules of thumb to develop proper AI models 150 

for civil engineering problems (Behnood & Golafshani, 2020; Carpenter & Barthelemy, 1994; 151 

Degtyarev, 2020; Naser, 2021; Sun, Burton, & Huang, 2021; Tarawneh, Momani, & Alawadi, 152 

2021). 153 

Do master simple AI models before learning complex/exotic/causal models. 154 

AI platforms are readily available, including those with built-in packages such as Scikit, R, and 155 

Python. This may cause some users to lose track of many “simple”, or “beginner” AI models. It is 156 

then advisable to start with small and manageable problems to visualize how a simple AI model 157 

performs before moving towards “complex”, “exotic”9 or “causal” models. This step-by-step 158 

learning approach is fundamental in civil engineers. New civil engineering students are first 159 

introduced to the fundamentals of statics and mechanics and then drawn to the theory of structures 160 

and structural design principles. During this journey, examples are first articulated and solved 161 

using simple problems (i.e., equilibrium of a point) before moving to more advanced problems 162 

(e.g., design of joints). Visualization and learning by example are two of the inherent 163 

characteristics of engineers. Use your training to your advantage and start with simple models. 164 

You may be, or dare say be, surprised at how many challenging problems can be solved using 165 

simple models. Remember your objective(s) and draw a path. If you are trying to understand a 166 

phenomenon, then aim for causality models. Or, if you are exploring a new problem domain or 167 

data set, then perhaps try a data-driven approach or physics-informed approach. There is a fine 168 

line to each, and all approaches are bound to intersect at some point. The choice of an AI model 169 

or strategy depends on your level of experience, data set, and objective(s). 170 

 
8 Please refer to (Lones, n.d.) For a good discussion on the role of data in AI modeling. 
9 Complex models are those that require more than a mere application of an algorithm (i.e., joining/ensembling of 

different algorithms into one algorithm) and exotic models are those that use one algorithm to optimize or finetune 

the parent algorithm.  
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You do not always need complex or exotic models! 171 

Many of the existing AI models have been developed by our colleagues in the mathematics and 172 

computer science departments. Such models have also been extensively tested and validated across 173 

multiple problems and datasets. Due to the above, AI models (simple, as well as exotic) perform 174 

well across different fields and are likely to do well in civil engineering, too (even in their default 175 

settings (Naser et al., 2021)). Thus, remember to aim to satisfy the Law of Parsimony of Occam’s 176 

Razor, which implies that simplicity is a goal in itself (Hildebrand, 1938). Start with simple AI 177 

models, and then apply complex ones as needed. Simple models are easy to develop and finetune. 178 

Such models are easier to debug and trust; bugs and trust are bound to rise at some point in time 179 

continue to hinder the integration of AI. While it is exciting to see works involving intricate and 180 

novel AI models, such models can also (and simply) be contrasted against simple models that often 181 

take a fraction of the time to build and interpret than more complex models. 182 

Ask yourself, do I need a causal model? 183 

In some instances, our goal or objective is not to discover new knowledge. Perhaps one would like 184 

to explore a dataset or simply develop a quick solution to a problem. In other instances, we may 185 

already know the inherent mechanism(s) behind a phenomenon or simply not be interested in 186 

arriving at the true cause-and-effect. Thus, a causal model is not a necessity for a successful AI 187 

analysis.   188 

Do not only concentrate on validating AI models and do think about model deployment. 189 

It is natural for an AI model to achieve high-performance metrics on selected, historical, or 190 

relatively “small” datasets (Baylor et al., 2017). Yet, this does not mean the model will perform as 191 

well when it is deployed in real-time, real-world conditions. In a way, reporting sky-high 192 

performance metrics in training or validation is impressive – and perhaps warranted and expected 193 

in scholarly articles. But one should be wary of misconstruing such metrics as a means for 194 

generalization or of justifying causal inferences. Remember, a model is trained and validated on a 195 

certain dataset10, then deployed to the real world (where it is exposed to data likely to be of lesser 196 

quality and/or more variety than the initial set). During the training process, we hope to uncover 197 

why a certain phenomenon occurs, and during the deployment process, we hope to be able to 198 

capture the phenomenon on hand. While creating an AI surrogate to overcome a problem is 199 

possible via a data-driven approach, uncovering why a phenomenon occurs is a causal pursuit that 200 

may go beyond that of a data-driven approach.  201 

Do not chase forced goodness. 202 

A common misconception associated with AI modeling is that they are only deemed fit if if they 203 

achieve high performance metrics (Corbett-Davies & Goel, 2018; Naser & Alavi, 2021). This 204 

exercise has initiated an unwarranted race towards overly tuned models to specific datasets11 as 205 

well as inflated works with marginal merit. The reader is urged to remember that error metrics and 206 

performance fitness indicators are mathematical/logical constructs that describe the 207 

difference/spread between AI predictions and ground truths. While attaining high metrics may 208 

 
10 Unfortunately, the life cycle of most scholarly works ends here. 
11 This is unlike the race to develop “better”, “new” or “improved” generalizing models. 
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imply that the model on hand captures the examined phenomenon within a dataset with an 209 

acceptable level of confidence, one needs to remember that not all metrics are created equally. 210 

Thus, the user needs to identify the most suitable metrics for the given problem/data and then also 211 

needs to understand the assumptions used in deriving such metrics to overcome their limitations – 212 

which will also help in better understanding model performance. False goodness occurs when 213 

inappropriate metrics are applied or when their outcome is misinterpreted (Arp et al., 2021). A 214 

false sense of causality arises once adequate models are assumed to “understand” or “grasp” or 215 

“map” the phenomenon on hand in a causal manner.  216 

Do understand how performance metrics work and what they imply.  217 

Oftentimes, conventional metrics used in engineering and science problems (i.e., Pearson 218 

correlation coefficient (R), etc.) describe the overall performance of a particular model across a 219 

dataset. This may innocently hide poor performance in local regions within a dataset and notably 220 

near extreme ranges or outliers. Critically, the discussion on performance metrics tends to conceal 221 

the taken-for-granted assumptions within the metrics. These assumptions seem to be rarely or 222 

thoroughly checked (Arp et al., 2021). Similarly, different problem formulations tackled by AI 223 

may also require the adoption of specific metrics. For instance, the metrics used in regression and 224 

classification problems are different since both articulate distinct ways to evaluate performance 225 

(Botchkarev, 2019; Naser & Alavi, 2020).  226 

Do not rely on one algorithm, nor one goodness metric. 227 

While, naturally, a user may be inclined to favor a specific AI model due to preference of 228 

familiarity, it is advisable to explore other algorithms. The famous “No Free Lunch” theory implies 229 

that some algorithms are not more sensible than others, but rather the averaged performance of all 230 

algorithms can be declared equivalent across all possible problems (Wolpert & Macready, 1997). 231 

From this perspective, an AI user is expected to attempt to explore more than one adequate 232 

algorithm (or algorithm architecture), or perhaps a series of adequate algorithms, in their analysis. 233 

Similarly, the above can also be extended towards selecting a combination of performance metrics, 234 

as opposed to a single metric, when examining the predictive capability of a given model. The 235 

critical point is to use multiple validation practices and to explore the auditability of new tools for 236 

AI analysis.  237 

Do test, test, and further test.  238 

In general, AI modeling is relatively quick – especially when compared to traditional physical 239 

testing or FE simulations. This allows us to conduct further and affordable testing on our AI models 240 

– especially when most AI models are hard blackboxes that we do not know how they exactly 241 

work (remember that most civil engineers are appliers of AI, and not developers). As such, a user 242 

is encouraged to examine AI models with scrutiny. In addition to considering multiple algorithms 243 

and performance metrics, one may also opt to apply a combination of data transformation methods 244 

(i.e., linear, logarithmic, etc.) or validation methods (i.e., k-fold validation, train/validate/test 245 

splits, out of the bag testing, include confidence intervals, benchmark testing12 , etc.) or ensembling 246 

 
12 Benchmarked databases and algorithms on key structural engineering problems have been recently published (see 

Naser et al. (2021)). 

https://doi.org/10.1080/10286608.2022.2049257
https://doi.org/10.1080/10286608.2022.2049257


This is a preprint draft. The published article can be found at: https://doi.org/10.1080/10286608.2022.2049257        

Please cite this paper as:  

Naser M.Z., Ross B. (2022). “An opinion piece on the dos and don’ts of artificial intelligence in civil engineering and 

charting a path from data-driven analysis to causal knowledge discovery.” Civil Engineering and Environmental 

Systems. https://doi.org/10.1080/10286608.2022.2049257  

8 
 

techniques. In addition, complimenting AI model testing with sensitivity and reliability studies can 247 

go a long way – especially in a design scenario where a certain level of reliability is needed (such 248 

as that often required in civil engineering building codes).  249 

Do not assume your model is unbiassed.   250 

In real life, data may be expensive to obtain and may be limited in size and comprehensiveness 251 

(Belkin et al., 2019). Thus, compiled datasets may not always be considered fair or inclusive. This 252 

is particularly problematic in social sciences, with datasets taken from human populations that do 253 

(or often don’t) include data from minority groups. The same can also be a problem in engineering 254 

datasets that are thought to be complete. For example, datasets on urban water distribution in 255 

relation to resident income or race or wildfire-trigged evacuation in rural areas may not reflect the 256 

entire population and may leave minoritized groups out. One must not forget that historical data 257 

can be helpful to guide preliminary designs, yet a user should be aware that historical data may, or 258 

may not, be representative of recent and current conditions. Do remember that many models are 259 

biased since they are the result of human operators and historical trends13.  260 

Do share your data and details of your models. 261 

To better facilitate the integration of AI into civil engineering, it is advisable for AI users to share 262 

full details (including data and model settings) of their works whenever possible. Noting the 263 

availability of free and comprehensive data repositories (i.e., Mendeley, GitHub), such data 264 

sharing can be easily appended. The same is also true for creating AI-based applications or 265 

software that can be shared with others. This practice will help further verify existing models, 266 

extend working models, and expedite adopting AI by providing the community with new data, 267 

case studies, and pre-built models14. Perhaps in the near future, we could arrive at standardized 268 

procedures for creating and validating AI models in our domain. To get there, we need a series of 269 

community initiatives and collaborative efforts. A simple and doable initiative at this point in time 270 

is to share our data and models. 271 

Do integrate AI into your future works.  272 

AI methods are expected to continue to advance and become more prominent in the years to come. 273 

It is then advisable to start to incorporate AI into our curriculum, research, and practice. For 274 

example, short modules can be added to existing courses, and practitioners can attend seminars 275 

and workshops on AI development and deployment. In addition, efforts may lead to special issues 276 

or edited volumes/collections with AI themes to be sponsored by leading journals, etc. Perhaps a 277 

smaller component of AI can be added to ongoing research projects/proposals. The boarder civil 278 

engineering industry homes immense and underutilized data. A line of communication should be 279 

established between academia and industry partners. Remember, the industry needs our graduates, 280 

and academics need to understand our industry’s needs. 281 

 
13 We would like to point out that while this section is relatively shorter than other sections, the potential broader 

impacts print of bias and trust with regard to AI in civil engineers is large and requires a series of dedicated 

investigations.  
14 The same can also be true for FE models. Admittedly, such models may be much larger in size and may require 

specialized software to operate as opposed to lines of codes of an AI model. 
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