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Abstract 

Machine learning (ML) has been shown to bypass key limitations of traditional methods (i.e., 

physical testing and numerical simulations) and hence presents itself as an attractive and effective 

technology in engineering. While the integration of ML brings exciting opportunities, it also brings 

unique challenges. One such challenge is related to the heavy reliance of ML on large datasets and 

computing facilities – for algorithm development, training, and storage. To realize Green ML 

(GML), this paper argues that ML users are to be cognizant of the hidden costs of energy 

consumption and subsequent carbon emissions arising from ML modeling, and hence they are 

ethically bound to apply ML responsibly. In this pursuit, a series of simple and exotic ML 

algorithms are examined, and their performance on a large dataset (~8,000 observations) is 

documented on five fronts; predictive performance, model size, training time, energy consumption, 

and equivalent carbon emissions. In addition, this work also examines the influence of algorithm 

architecture, processing language, number of features, as well as dataset size on model predictivity 

and energy consumption. Findings from this investigation infer that a 23-99% reduction in energy 

consumption and carbon emissions can be attained (while maintaining a comparable level of 

accuracy) by adopting simple as opposed to exotic ML models. The same findings have also led 

to the development of two new metrics that can tie the predictivity (i.e., level of accuracy) to the 

amount of energy consumed per algorithm. These metrics can be used to compare model 

performance in a similar manner to that traditionally used to assess the accuracy of ML predictions, 

thereby integrating energy-based awareness as a dimension of model comparison.  

Keywords: Machine learning (ML); Structural engineering; Energy; Carbon emissions. 

1. Introduction 

Ongoing advancements in machine learning (ML) have made it possible to extend this technology 

to various industries. One such industry is structural engineering which also happens to rely on 

numerical simulations for multi-scale problems [1]. While traditional simulation techniques (such 

as the finite element (FE) method) continue to be favorable given the familiarity of structural 

engineers with the fundamentals of such techniques, recent works have noted a rising interest in 

ML [2,3]. The outcome of such recent works, together with others [4–7], notes the potential of ML 

as a complementary technology that can offer novel solutions to structural engineers. 

More specifically, a collection of structural engineering-based ML approaches have been reviewed 

in [8–10] with a common convergence of how ML can bypass the limitations of traditional 

methods and hence advocate for its adoption as we near the era of Construction 4.0. In addition, 

the application of ML is seen to be fruitful across a number of sub-disciplines belonging to 
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structural engineering. For example, ML models are reported to be able to accurately predict the 

properties of construction materials [11,12], detecting damage in structures [13,14], evaluating 

structural performance of elements [15,16], components [17,18], and structures [19]. In addition, 

ML has also been used as an aid tool for laying out blueprints and structural plans [20–22]. Recent 

trends in existing literature show that ML is being integrated into complex and unique problems 

as well [23,24].  

Given the current interest in adopting ML, a look toward current practices [4–6,9,25–33] reveals 

a few interesting observations; 1) we continue to lack a unified procedure to apply ML to our 

problems1, 2) the application of ML is a user-derived operation wherein individual expertise 

influence and drive model development and deployment, and 3) ML is primarily applied to well-

defined problems of a smaller search space as that commonly faced in other domains (e.g., 

medicine, or finance, etc.). These observations imply that we are yet to witness an upcoming boom 

in ML within structural engineering – which is likely to take place in the coming few years.  

Therefore, it is of merit to proactively set the stage to mold the integration of ML in this domain. 

While it is virtually impractical to deliver one solution that fits all early into adopting ML, a few 

essential items can be emphasized and discussed. Such items may include the need for 

transparency, interpretability, fairness, and energy efficiency. The latter is the focus and 

motivation of this work.  

With the growing need for larger yet accurate models, structural engineers will be expected to 

develop complex models. Such models are often tied to intricate architectures/topologies and are 

likely to require a tremendous amount of energy for training, development, storage, and 

deployment. To put this into perspective, two recent works have estimated the cost of training 

various deep learning models in terms of carbon emissions and monetary costs and reported 

estimates varying between 6.0-150,000 Kg and between $41.0 to $3.2 million per model [34,35]. 

The reader is to note that a human being, on average, contributes to about 5,000 Kg of carbon 

emissions on an annual basis, and 150,000 Kg of carbon emissions is equivalent to that emitted 

through the lifetime of five fuel-based vehicles [34].  

On a larger scale, 2.3% of global carbon emissions are attributed to the information and 

communication technology sector, as estimated in a recent report by the Global e-Sustainability 

Initiative [36]. For comparison, the cement and aviation industry generates carbon emissions of 

about 5% and 1.7%, respectively [37,38]. Given the rise in recent calls to cut carbon emissions by 

50% within the next ten years to negate the escalating rates of climate change, one means to align 

with such calls is to ensure considerate ML energy expenditure [35].  

On a different front, exotic or highly advanced versions of existing ML models provide 

improvements in accuracy, among others; however, such improvements may or may not positively 

reflect upon the consumed resources to attain such improvements. One particular example that fits 

the former is the well-known computer vision model released in 2015 known as ResNet. The 

improved version of this model, ResNeXt, not only required 35% more computational resources to 

 
1 It is worth noting that the same is also true in other domains as well.  
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train than ResNet but only achieved a 0.5% improvement in accuracy [39]. A second example of 

the latter is that related to the deep learning network, SqueezeNet, which attained the same accuracy 

as AlexNet (the winner of The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 

2012, with fifty times fewer parameters and a squeezed size of 0.5 MB as compared to 240 MB 

for AlexNet [40]. 

It is true that improved accuracy comes in handy; however, for some applications, minimal 

improvement in accuracy may not warrant the additional energy-based resources needed to realize 

such accuracy. For instance, predicting if a concrete mixture can develop strength of 38 or 40 MPa 

may not significantly alter the practical application of such a mixture since both strengths remain 

within the range of normal strength concrete. In this example, pushing a typical ML model to chase 

accuracy metrics of unity may not be warranted. Similarly, training an exotic model (e.g., an 

ensemble or a deep learning model) to predict the above when a simple model (i.e., a decision tree) 

can be trained to yield a comparable prediction accuracy may also be unnecessary. On a parallel 

front, developing a highly complex neural network to classify if structural members will undergo 

damage or not may lead to high energy consumption as compared to developing a leaner classifier 

– one that is based on logistic regression (assuming that both models can deliver a comparable 

performance). 

Given the rise in ML adoption, which is also expected to initiate a ML-based race within the 

construction industry, one can appreciate the environmental and societal benefits of arriving at 

energy efficient ML models. Realizing energy efficient ML models, or strategies that enable 

cognizant and reduced-order modeling, can be of merit since these are the main tasks that ML 

users can control in our domain – as opposed to tackling other dimensions to this problem such as 

developing new algorithms or hardware, or storage, or tuning of cloud computing capabilities etc. 

While advancements in other dimensions are indeed necessary to realize a more energy efficient 

ML; practically speaking, investments in new hardware-like facilities by structural engineering 

firms are often expected to last for a few years, and hence embracing a user-driven approach is 

seen of equal importance, if not of more importance, to accelerate adopting Green ML (GML). 

This work argues that adopting cognizant and reduced-order modeling strategies can be seen as a 

sustainable approach to ML adoption. The same exercise will educate structural engineers to be 

inherently efficient and is expected to have long-lasting benefits.  

This paper examines cognizant and reduced-order strategies that can be practiced by structural 

engineers to minimize energy consumption arising as a byproduct of developing ML models. In 

addition, this paper carries out a series of comparisons between simple and exotic ML algorithms 

to report on their predictive performance, model size, energy consumption, and storage need. More 

specifically, this work explores the influence of algorithm architecture, processing language, 

number of features, as well as dataset size2. The selected algorithms comprise; Gradient Boosted 

 
2 Given the wide possibilities and approaches of tuning algorithms (especially those of different topologies), it is 

deemed necessary to establish the following rationale early into this work. Thus, the reader is to realize that in order 

to enable reproduction of this analysis and to allow reporting true benchmarks on models’ performance, all of the 

examined algorithms were applied in their default settings. As such, the goal of this work is not to arrive at a “solution” 

to the examined phenomenon, nor to identify the most “suited” algorithm to solve such a phenomenon, but rather to 
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Trees (GBT, including those of Extreme and Light Gradient nature), Keras Deep Residual Neural 

Network (KDNN)), TensorFlow Deep Learning (TDL), Vowpal Wabbit (VW), and Random 

Forest (RF). The performance of these algorithms was compared in classifying if a given concrete 

mixture can attain specified design strength at in-situ conditions by assessing a large tabular 

dataset.  

2. Materials and methods 

2.1 Selected Machine Learning Algorithms   

The selected algorithms in this work are briefly described herein, and their full description can be 

found in their respective references, as well as in [41–49]. These algorithms are among the most 

widely used algorithms in this research area, as noted in the following recent review papers [10,50]. 

2.1.1 Variants of Gradient Boosted Trees (GBT)  

A GBT trains a simple tree-like model and then uses the first model’s error as a feature to build 

successive models. Focusing on errors obtained from a feature when building successive models 

reduces the overall error in the model. Two variants of GBT are the XGBoost and Light Gradient 

Boosting Machine (LGBM). The XGboost improves the performance of a GBT via a weighted 

quantile sketch (an approximation algorithm that determines how to split candidates in a tree) and 

the sparsity-aware split finding (which works on sparse data, as well as data with missing values). 

The XGboost uses a pre-sorted algorithm and a histogram-based algorithm for computing the best 

split. This algorithm was first published by Chen and Guestrin [43], and more details on this 

algorithm can be found in such work. 

On the other hand, the LGBM algorithm by Microsoft [51] introduces two techniques to improve 

the performance of a GBT. These techniques are gradient-based one-side sampling (which 

identifies the most informative observations and skips those less informative) and exclusive feature 

bundling (which groups features in a near-lossless way). The LGBM is an improvement over both 

the XGBoost and traditional GBTs.  

The code of the used XGBoost can be found online at [44,45]. This algorithm incorporates the 

following pre-tuned settings; learning rate = 0.05, maximum tree depth = 3.0, subsample feature 

= 0.5, number of boosting stages = 6,250, and minimum interval for early stopping = 200. The 

LGBT algorithm can also be found at [52] with the following default settings: learning rate = 0.05, 

maximum depth = “none”, number of boosting stages = 6,250, and minimum interval for early 

stopping = 200. Finally, two GBTs were used (one of Python origin and another of R origin), 

which can also be found herein in their default settings [46,47]3.  

 
report on findings from each of the examined algorithms (as obtained from their default settings) from an energy point 

of view. A full diagnostic test to explore the effect of hardware, explicit tuning of algorithms, as well as other 

algorithms that were not showcased herein, is deemed cumbersome to fit into one work and hence interested readers 

are invited to extend this work beyond its original message. The author hopes that the collective effort within this 

community and in the coming years will generate in depth insights to expedite the adoption of GML.  
3 This analysis acknowledges that each algorithm was developed with certain default settings as per the developers of 

each algorithm. Hence, algorithm settings were not set to be similar in GBT variants since: 1) other algorithms such 

as KDNN, TFDL, etc. also have unique settings, and 2) it is not possible to ensure that all algorithms will have similar 
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2.1.2 Keras Deep Residual Neural Network (KDNN) 

Keras is a high-level library for developing neural networks [53]. In a residual network, a direct 

connection exists, linking data points to the outputs. Such a connection smoothens the loss function 

and enables better network optimization. In the used KDNN, default settings of a learning rate of 

0.03 was used, along with a Sigmoid activation function, Adam optimizer, and different layer 

architectures (1 layer of 64 units, 1 layer of 1536 units, 2 layers of 64, and 64, and 3 layers of 256, 

128, and 64 units). KDNN can be readily found at [48]. 

2.1.3 TensorFlow Deep Learning (TFDL) 

A TFDL is an open-source and free neural network-based model that uses Deep Learning and is 

hosted by Google [54]. The used algorithm in its default settings (neurons in each layer = 100, 

number of training examples = 128, optimizer = Adam, adaptive learning rate, early stopping 

window = 5, and activation function of ReLu) can be found at [49]. 

2.1.4 Vowpal Wabbit (VW) 

Vowpal Wabbit is a fast and out-of-core algorithm learner capable of streaming data (which comes 

in handy in large databases that cannot be supported by existing hardware). VW initially started at 

Yahoo and then moved to Microsoft. VW has a learning rate of 0.1, logistic loss function, power 

on the learning rate decay = 0.5, and can be found herein [55]. 

2.1.5 Support Vector Machines (SVM) 

The Support Vector Machine (SVM) algorithm aims to identify a line or a boundary (i.e., 

hyperplane) in an n-dimensional space to classify data into separate classes [56]. This plane is 

found by maximizing the distance between data points of each class to allow for confident 

classification [27]. SVM uses a special form of mathematical function defined as kernels (k). A 

kernel function transforms inputs into the required form. The used SVM utilizes penalty parameter 

= 12915, Gamma parameter = 0.208, and can be found at [57].  

2.1.6 Logistic Regression (LR) and Elastic Net (EN) 

The logistic regression model is a generalized linear model that applies a binomial distribution to 

fit regression models to binary response variables. The applied LR model herein had the following 

settings; Sigma = 10-6, fit intercept = True, and tolerance = 0.0001. The Elastic Net (EN) classifier 

is an extension of LR that applies L1 (estimate the median of the data) and L2 (estimate the mean 

of the data) prior as regularizers. Both models were taken from [58]. 

2.1.7 Random Forest (RF)  

The Random Forest (RF) algorithm is an ensemble learner that forms a series of decision trees 

[59]. In a classification problem, the majority of predictions, as compared against all trees, are 

 
settings (given that some settings which may exist for a particular algorithm, yet may not exist for another/all 

algorithms). As mentioned earlier, this analysis does not seek to identify the most “suited” algorithm, but rather to 

report on findings from each of the examined algorithms from an energy perspective.  
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used to consolidate the final outcome. Two RFs were used (one of Python origin and another of R 

origin), which can also be found herein in their default settings herein [60] and [61], respectively. 

2.2 Description of Dataset 

This section describes the examined dataset to be used in this work. This dataset was selected given 

its tabular nature, which is also likely to be present in most structural engineering problems [10,50]. 

As such, all observations were numeric, and no missing data points were present. This allows for 

somewhat of a fair field for comparison for the selected ML algorithms, given each’s tendency to 

handle missing and/or categorical data differently (which may skew the primary focus of this 

investigation).  

This dataset comprises compressive strength and mixture proportion of about 8,000 concrete 

mixtures as measured from in-situ conditions and reported by Young et al. [62,63]. The 

compressive strength of each concrete mixture at 28 days was measured following the ASTM C39 

standard. In addition, mixture proportions including water, cement, and fly ash contents (in 

kg/m3 of concrete), water-reducing admixture (WRA), and air-entraining admixture contents 

(AEA in 0.01kg/ kg of cementitious material), coarse and fine aggregate contents (in kg/m3 of 

concrete), and fresh air content (in volume %) were reported. The focus of this dataset was to 

predict if a given concrete mixture will be able to develop its design compressive strength of 

concrete at in-situ conditions. As such, each measured mixture was compared against that of the 

design strength. If the attained strength is equal to or exceeds that of the design strength, then the 

mixture is deemed satisfactory. If not, then the mixture is labeled “under-designed”.  

After cleansing the dataset of outliers and measurements with features of missing values, 6,647 

measurements were labeled as satisfactory, and 1,099 measurements were labeled as under-

designed. This cleansing process was carried out using a new approach that has been recently 

published by the author, wherein unsupervised and supervised learning methods are used to 

identify and remove outliers (see [64] for full details on this approach)4. Figure 1 shows additional 

insights into the statistical distributions of each feature used in this dataset.  

 

 
4 From a practical view, and for simplicity, the reader can assume that this dataset has two classes (Class 1 contains 

6,647 satisfactory measurements and Class 2 with 1,099 under designed measurements).  
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Fig. 1 Details on the dataset 
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2.3 Model Development  

Given the large range of features noted in the previous section, it is thought to apply data 

processing methods such as feature normalization [65]. In this process, the collected data is 

transformed such that the standard deviation is set equal to unity and the mean equal to zero [66]. 

Then, additional steps were taken to ensure the proper performance of the model. For a start, the 

dataset was randomly shuffled to eliminate the influence of neighboring measurements and data 

points (especially those taken within one in-situ job). Then, the shuffled dataset is split into two 

sets – a training and a testing set. The split of choice was 70:30 as per recommendations of recent 

works [67,68].  

The training set was further processed via 10-fold cross-validation technique which became handy 

in ensuring the proper distribution of samples and hence allowed the algorithms to be examined at 

different subsets. In this technique, the training set is split into 10 equal-sized subsets such that 9 

subsets are used for training, and the remainder of these is kept for validation [69]. All subsets 

were the same across all algorithms.  

In addition to adopting a 10-fold cross-validation technique, model predictions were also checked 

against a series of performance metrics that measure the closeness of a predicted outcome to that 

predicted by a given ML model [70,71]. In this work, metrics that are commonly used by the 

structural engineering domain are selected [29,72–74]. Three classification metrics are used in this 

classification-based problem. These metrics are accuracy (ACC), Area under the ROC curve 

(AUC), Log Loss Error (LLE). Additional details on each metric are shown herein.  

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
             (1) 

where, P: predictions, N: number of real negatives, TP: number of true positives, TN: number of 

true negatives,  

• Evaluates the ratio of the number of correct predictions to the total number of samples. 

• Presents performance at a single class threshold only. 

• Assumes equal cost for errors [75]. 

 

𝐴𝑈𝐶= ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)𝑁−1

𝑖=1 (𝑇𝑃𝑖+1 − 𝑇𝑃𝑖)         (2) 

where, FP number of false positives, FN number of false negatives.  

• A value of unity indicates an accurate prediction.  

 

𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃𝑀
𝑐=1            (3) 

where, M:  number of classes, c: class label, y: binary indicator (0 or 1) if c is the correct 

classification for a given observation. 

• Penalizes for being confident in the wrong prediction. 

• Has a probability between zero and unity. 

• A lower value for log loss is favorable. 
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3. Results and Discussion  

This section evaluates the performance of all of the selected ML models upon the presented dataset 

from two main perspectives: predictivity and estimated energy consumption. In addition, this 

section highlights the influence of the dataset size, the number of features used in model 

development, ML model architecture, and programming language in more detail and from each of 

the aforenoted two perspectives. Finally, a discussion on the estimated carbon emissions emitted 

per algorithm is also presented. It is worth noting that a private cloud computing service was 

obtained for this analysis, and hence all algorithms were granted access to the same computation 

and hardware resources. As such, the influence of such resources on model performance is not 

discussed as it is normalized. 

3.1 Insights from a Predictivity Perspective  

The selected ML models were first evaluated from a predictivity point of view (as in how well the 

predictions of each model match with the measured observations). Thus, predictions from all 

models were compared utilizing the ACC, AUC, and LLE performance metrics. Figure 2 and Table 

1 articulate the outcome of this comparison. Table 1 shows that most, if not all, models seem to 

capture the phenomenon on hand adequately. The same table also shows that all models achieved 

comparable performance across all metrics and against training, validation, and testing splits. 

While some variations exist between all models in the reported metrics, a look into Fig. 2 infers 

that these variations can be considered minor (as per the scale of the horizontal axis).  

For example, the lowest ACC value obtained against the full dataset was 0.946 by the KDNN with 

one layer of 64 units during its training procedure (which also happens to be the only value outside 

of 0.983 (or 98.3%) in ACC or AUC metrics. Beyond that, all models performed comfortably 

within the 98.6-100.0% range. In the case of the AUC metric, the lowest value was noted by the 

EN model with 99.1%, with all other models reaching the range of 99.2-100.0%. All models also 

performed well when their performance was compared using the LLE metric. Except for the 

KDNN with one layer of 64 units, all models scored within 0.05, with the majority scoring in the 

range of 0.01-0.004 (note that a score of 0.0 implies a perfect model).  

As expected, and as Fig. 2 and Table 1 show, not a particular model scored the highest in all 

metrics. As such, a new composite metric was developed to enable a unified and more accessible 

comparison between all models developed in this study (from a predictivity perspective). This 

composite metric was created by combining ACC, AUC, and LLE. The synthetic metric 

acknowledges that higher values of ACC and AUC and lower values of LLE infer good 

predictivity. This metric is listed below, and Fig. 2d shows that the best performing model based 

on this metric is the XGboost model, followed by RF and LGBM5.  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑃) = ∑
𝐴𝐶𝐶×𝐴𝑈𝐶

𝐿𝐿𝐸

𝑛
𝑖          (4) 

 
5 Despite this comparison, the reader is reminded that the goal of this work is not to identify the best performing ML 

model but rather to showcase that in many instances, a variety of ML models can inherently be good candidates for 

solving a particular problem. 
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where, i = training, validation, and testing. Higher values of this metric are favorable; for example, 

for a hypothetical case of ACC and AUC of unity, and LLE = 0.001, this metric yields 1000. 

3.1.1 Influence of dataset size   

Given the large size of our dataset (~8,000 observations), it is thought to explore the influence of 

reducing the size of the dataset upon the predictivity of all selected models (on training, validation, 

and testing split by examining the ACC, AUC, LLE and P metrics). Thus, only the training split is 

changed from 70% to 25% while controlling all other aspects of model development (i.e., the 

analysis is re-run by reducing the number of used observations from 70% of the whole dataset to 

25% with the remainder (45%) of data used in the initial training omitted from the analysis). The 

outcome of this analysis is shown in Fig. 2 and Table 1.  

When Figs. 2a, 2b, 2c, and 2d are compared against Figs. 2e, 2f, 2g, and 2h, one can see the 

following with regard to the performance of models in the full and reduced dataset; 1) the variation 

between models performance in terms of ACC and AUC is very comparable; with ML models 

performing slightly better in the reduced dataset, 2) LLE metric performance in the whole dataset 

is better than the reduced dataset (especially in the case of KDNN variants), 3) the performance of 

models in terms of the composite metric is higher in the case of the full dataset which reflects the 

larger degree of changes in LLE as to those observed in ACC and AUC, 4) despite XGBoost 

remaining the highest-ranked model, minor changes to overall models ranking occurred, and 5) 

from a practical engineering point of view, the performance of all models is adequate which may 

infer the suitability of all models from a predictivity perspective.  
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(d) Composite metric (in order) (all features) 

[higher values are favorable] 

    

(c) ACC metric (reduced dataset) (d) AUC metric (reduced dataset) (e) LLE metric (reduced dataset) 
(f) Composite metric (in order) (reduced 

dataset) [higher values are favorable] 

    

(g) ACC metric (reduced features) (h) AUC metric (reduced features) (i) LLE metric (reduced features) 
(j) Composite metric (in order) (reduced 

features) [higher values are favorable] 

Fig. 2 Comparison of metrics 
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Table 1 Evaluation of ML models.  

Cases Model ACC** AUC LLE Model size (MB) Training time (Sec) Prediction time (sec)* ** 

F
u

ll
 f

ea
tu

re
s 

GBT  
Python 0.997/0.996/0.999 0.998/0.998/1.000 0.013/0.012/0.006 0.337 389 0.523 

R 0.997/0.996/0.999 0.998/0.998/1.000 0.012/0.012/0.006 0.259 391 2.567 

XGBoost 0.996/0.997/0.998 0.999/0.999/1.000 0.011/0.008/0.004 1.239 437 0.478 

LGBM 0.997/0.998/0.991 0.999/0.999/1.000 0.014/0.009/0.006 1.130 610 0.428 

KDNN 

64*  0.946/0.983/0.984 0.998/0.997/0.997 0.071/0.074/0.073 0.271 677 0.851 

1536 0.988/0.983/0.989 0.999/0.997/0.998 0.043/0.051/0.046 4.757 197 0.895 

64/64  0.992/0.988/0.990 0.999/0.998/0.999 0.049/0.054/0.050 0.290 677 0.835 

256/128/ 64  0.993/0.989/0.993 0.999/0.998/0.999 0.049/0.056/0.050 0.446 677 1.300 

TFDL 0.998/0.996/0.999 0.999/0.999/0.999 0.014/0.019/0.009 1.818 318 0.778 

VW 0.992/0.990/0.993 0.992/0.999/0.999 0.025/0.032/0.022 0.223 696 0.404 

SVM 0.997/0.995/0.997 0.999/0.998/0.998 0.007/0.014/0.011 2.162 233 0.490 

LR 0.996/0.996/0.998 0.999/0.998/0.998 0.014/0.016/0.014 0.152 259 0.430 

EN 0.988/0.986/0.992 0.991/0.999/0.999 0.039/0.043/0.034 0.223 322 0.489 

RF 
Python 0.996/0.996/0.999 0.999/0.999/1.000 0.013/0.012/0.007 0.626 366 0.427 

R 0.996/0.998/0.999 0.999/0.999/1.000 0.011/0.011/0.006 1.460 386 2.657 

R
ed

u
ce

d
 d

a
ta

se
t 

GBT 
Python 0.994/0.994/0.999 0.999/0.999/0.999 0.021/0.019/0.008 0.201 402 0.212 

R 0.993/0.995/0.999 0.999/0.999/0.999 0.016/0.014/0.008 0.144 366 2.581 

XGBoost 0.996/0.996/0.999 0.999/0.999/0.999 0.013/0.012/0.007 0.573 446 0.259 

LGBM 0.996/0.996/0.999 0.999/0.999/0.999 0.014/0.014/0.010 1.452 246 0.255 

KDNN 

64 0.986/0.980/0.986 0.998/0.997/0.997 0.074/0.078/0.076 0.184 785 0.745 

1536 0.983/0.975/0.981 0.998/0.996/0.996 0.086/0.099/0.091 1.816 857 0.580 

64/64 0.985/0.978/0.984 0.998/0.996/0.997 0.140/0.141/0.143 0.204 842 0.625 

256/128/ 64 0.988/0.984/0.987 0.998/0.997/0.998 0.071/0.073/0.070 0.359 750 0.556 

TFDL 0.994/0.994/0.996 0.999/0.999/0.999 0.028/0.021/0.021 3.881 310 0.586 

VW 0.994/0.989/0.995 0.999/0.998/0.999 0.019/0.033/0.016 0.136 410 0.224 

SVM 0.996/0.995/0.995 0.999/0.999/0.999 0.013/0.022/0.016 2.067 198 0.271 

LR 0.995/0.996/0.996 0.999/0.999/0.999 0.010/0.016/0.015 0.066 226 0.249 

EN 0.990/0.987/0.990 0.999/0.999/0.999 0.040/0.040/0.041 0.137 440 0.249 

RF 
Python 0.994/0.995/0.999 0.999/0.999/0.999 0.017/0.016/0.011 0.336 333 0.334 

R 0.994/0.995/0.999 0.999/0.999/0.999 0.016/0.014/0.009 0.929 492 2.670 

R
ed

u
ce

d
 f

ea
tu

re
s 

GBT  
Python 0.996/0.995/0.999 0.998/0.998/1.000 0.015/0.014/0.007 0.333 269 0.367 

R 0.997/0.996/0.999 0.998/0.998/1.000 0.014/0.013/0.006 0.258 179 2.595 

XGBoost 0.996/0.996/0.999 0.998/0.998/1.000 0.016/0.014/0.005 0.933 458 0.595 

LGBM 0.996/0.996/0.997 0.998/0.998/0.998 0.013/0.013/0.009 5.886 337 0.482 

KDNN 

64  0.991/0.990/0.992 0.999/0.998/0.999 0.084/0.085/0.082 0.221 417 0.835 

1536 0.994/0.991/0.995 0.999/0.999/0.999 0.024/0.031/0.024 2.880 217 0.773 

64/64  0.992/0.987/0.995 0.999/0.999/0.999 0.044/0.055/0.042 0.239 364 0.756 

256/128/ 64  0.994/0.990/0.996 0.999/0.999/1.000 0.013/0.013/0.009 0.390 406 0.815 

TFDL 0.994/0.996/0.996 0.999/0.999/0.999 0.038/0.024/0.035 4.061 362 0.675 

VW 0.972/0.980/0.972 0.991/0.995/0.990 0.013/0.078/0.013 0.176 527 0.392 

SVM 0.994/0.994/0.998 0.999/0.999/0.999 0.022/0.018/0.008 2.115 184 0.450 

LR 0.995/0.995/0.997 0.999/0.999/0.999 0.017/0.019/0.014 0.151 134 0.480 

EN 0.992/0.990/0.994 0.999/0.999/0.999 0.043/0.045/0.040 0.176 290 0.400 

RF 
Python 0.997/0.996/0.999 0.999/0.999/1.000 0.013/0.013/0.006 0.579 103 0.459 

R 0.996/0.996/0.999 0.999/0.999/1.000 0.014/0.013/0.006 1.403 171 2.661 

*Training/validation/testing. **Number of units in each layer. ***To score 1,000 observations. 
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3.1.2 Influence of number of features   

The influence of the number of features used in model development was also investigated. As 

such, the importance of features in all models (based on the full dataset analysis) was measured 

via the SHAP method [76] and presented in Fig. 3. This figure clearly shows that the most 

reoccurring features among all models are coarse aggregates, fine aggregates, and weight. Thus, 

the features in the full dataset were reduced to only these three features (while keeping the number 

of observations (~8,000) and analysis procedure the same).  

 

Fig. 3 Feature importance as measured in all models 

A look into the ACC, AUC and LLE metrics reveals that the performance of all models is 

comparable, if not improved, to that of the case of the analysis that incorporates all features. The 

VW model shows odd performance with a slight reduction in predictivity, which could be related 

to this model being heavily reliant upon the two aggregate features with little to nothing allocated 

for other features. Figure 2j shows the ranking of all models as per the reduced number of features. 

As one can see, the XGBoost remains the highest ranking model, followed by the RF and GBT 

variants.  

3.1.3 Influence of programing language  

Results from the conducted analysis can also be used to investigate the influence of adopting 

similar models but from different programming languages (see Fig. 3 and Fig. 4). In this analysis, 

ML models were used of different languages RF (Python and R), as well as GBT (Python and R). 

For a start, the examined variants realized similar feature importance scores for most involved 

features, which implies consistency. Looking at the final outcome of the predictivity-based 

examination shows that the R version of both models performed well ahead of the Python version.  
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Fig. 4 Comparison of predictivity metric 

3.1.4 Influence of model architecture   

Figures 3 and 4 can also be used to explore the influence of model architecture. In this exercise, 

four architectures of the KDNN model were investigated by changing the number of units and 

layers in each model. The outcome of this investigation shows that these four models achieved 

consistent feature importance measurements (especially in the case of fine aggregates and weight). 

In addition, these models performed at the bottom of all other models in terms of predictivity 

(however, the reader must be reminded that all models performed adequately from a practical point 

of view).  

The highest performing model of the KDNN variant in the case of the full dataset was that of one 

layer and 1536 units, followed by two layers (64/64), three layers (256/128/64), and one layer of 

64 units. Figure 4 shows that the predictivity of the KDNN (256/128/64) variant significantly 

improved, bypassing all observed improvements of other models when applied to the case of 

reduced features. Furthermore, KDNN (64) seems to be the most stable variant in terms of 

predictivity. Acknowledging the limited number of programming languages and model 

architectures examined herein, it would be interesting to extend this investigation to other cases. 

3.2 Insights from an Energy Perspective  

The performance of the selected ML models was also examined from an energy perspective 

wherein three metrics were explored, namely, model size (in MB), training time (in seconds), and 

prediction time to score 1,000 rows (in seconds). The outcome of this examination is shown in Fig. 

5 and Table 1. As one can see, the largest and smallest model size for the case of the full dataset 

was obtained from a KDNN (with 1536 units6) and LR, respectively. Overall, all ML models were 

 
6 This model also happens to be the fastest training model. 
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of size within 0.152-4.757 MB and completed training within 197-696 seconds. On the other hand, 

prediction times varied between 0.404-2.657 seconds (with VW and RF being at these extremes, 

respectively).  

Noting how faster training and prediction times and smaller model size (for the same workstation 

or cloud service) can be tied to lower energy expenditure, then all ML models were to be compared 

on this basis [77–79]. A new metric is then developed to account for the above rationale. This 

metric combines model size with training and prediction time such that: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 (𝐸) = 𝑀𝑆 × (𝑇𝑇 + 𝑃𝑇)       (5) 

where, MS: model size, TT: training time, and PT: prediction time. Smaller values are favorable 

with a hypothetical minimum value = 1.0 MB × 10 sec = 10 MB.sec. 

Figure 5 shows the results of applying this new metric. It is clear that the most energy efficient 

model is that of LR, followed by EN and the R version of GBT. In addition, once all models were 

normalized by the KDNN (with 1536 units), which happens to score the highest in the case of the 

full dataset analysis, one can appreciate the reduction of energy consumed by LR, which is 

estimated at 4.0% of that of the KDNN (with 1536 units).  

3.2.1 Influence of dataset size   

Surprisingly, reducing the dataset size was not always reflected by reducing model size, training 

time, or prediction time (see Fig. 5). While in large models such as KDNN (with 1536 units), this 

reduction results in a comparable reduction in model size, the same resulted in a significant 

increase in training time. In some instances, reducing the dataset size did not seem to affect model 

size much (i.e., SVM, KDNN (64, and 64/64)), nor prediction time (GBT (R), RF (R)). In all cases, 

the best performing models in terms of energy expenditure yielded the lowest composite metric, 

e.g., LR, GBT (R), and EN.  

3.2.2 Influence of number of features   

Figure 5 shows that the selected ML models behaved differently in response to feature reduction. 

For example, the model size of LGBM significantly increased despite a 40-50% reduction in 

training time. TFDL also underwent a similar performance to that seen in LGBM from a model 

size point of view. Finally, some models seem to have higher stability across all scenarios (i.e., 

XGBoost, LR, EN, among others, as seen in Fig. 5d). 

3.2.3 Influence of programing language  

Unlike results from the conducted analysis in the case of predictivity, the influence of different 

programming languages was not as apparent when compared from an energy consumption 

perspective. In this event, GBT (of both Python and R versions) seems to achieve a lower energy 

consumption than that of the RF variants. In fact, the RF (R) variant is noted to consume about 

64% times more energy than the Python variant (as opposed to the GBT (Python) variant needing 

48% more energy than the R variant) when compared based on the full dataset. Collectively, the 

Python variants achieved a smaller model size and shorter prediction times than the R variants. 

When compared to the energy consumption of LR, both R and Python variants consumed a more 
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considerable amount of energy in the range of 2.31-30.78 more than that of LR (with the Python 

variants scoring in the range of 2.95-7.50 and the R variants being on the higher side of the 

aforenoted range). 

3.2.4 Influence of model architecture   

The four previously discussed architectures of the KDNN model were also investigated to evaluate 

the influence of model architecture from an energy consumption perspective. As expected, our 

analysis indicates that simple architectures seem to consume less energy than those of deeper and 

heavier nature. More specifically, KDNN (64) and KDNN (1536) scored an E metric of 196.57, 

and 941.39 (for full dataset), 144.58, and 1557.37 (for reduced dataset), and 92.34, and 627.19 (for 

reduced features). Similarly, KDNN (64) and KDNN (64/64) scored an E metric of 196.57 and 

196.57 (for full dataset), 144.58, and 171.90 (for reduced dataset), and 92.34, and 87.18 (for 

reduced features). A close examination of the trends shown in Fig. 5 reveals that energy 

consumption is positively correlated to the total number of units in KDNN variants. Noting the LR 

scored the lowest score as per the E metric, then a comparison between KDNN variants and LR 

shows that these variants require 4.66-23.87%, 4.29-30.88%, and 9.68-104.31% more energy for 

the whole dataset, reduced dataset, and reduced features, respectively. To echo the previous 

section, future works are invited to further examine the performance of different architectures and 

programming languages.  
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(a) Model size (MB) (b) Training time (sec) 

  
(c) Prediction time (sec) (d) Composite metric [lower values are favorable] 

Fig. 5 Comparison of metrics 
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3.3 Insights from a Holistic Perspective  

In order to tie the predictivity of ML models to their energy consumption, this section presents a 

visual aid employing a combined chart (see Fig. 6). This chart divides the models into four clusters 

and identifies models according to their combination of predictivity and energy consumption.  

It is clear from Fig. 6 that RF (Python), GBT (Python), and GBT (R) consistently lay in the 

quadrant of high predictivity/low energy consumption. In addition, KDNN (1536) was found to 

reside in the low predictivity and high energy consumption, and the rest of the models were split 

into low predictivity/low energy consumption and high predictivity/high energy consumption. 

More exotic models, including XGBoost, LGBM, TFDL, and SVM, managed to cluster into one 

group (high predictivity/high energy consumption), and TFDL fell into the low predictivity/high 

energy consumption on two occasions.  

It is worth noting that the XGBoost model achieved the highest predictivity in all cases and scored 

0.58 on energy consumption (a slight 8% increase over the cut-off of 50%) in the case of the full 

dataset (while being on the lower energy side in the other two cases). As per the previous section, 

the LR model scored the lowest energy consumption in all cases.   
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Fig. 6 Comparison of ML models when normalized by the highest attainable predictivity and energy consumption [size of the bubble 

represents the magnitude of estimated carbon emssisons] 
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A look into Fig. 6 further shows interesting observations with regard to the programing language 

used and model architecture. For example, both GBT variants landed on the orange cluster (high 

predictivity/low energy consumption). The R version of RF deviated from this trend, given its high 

predictivity score. In addition, most KDNN variants (with the exception of KDNN (1536)) were 

clustered in the red cluster (low predictivity and low energy consumption), with the common 

notion of all variants being on the low predictivity side. The trend of varying programming 

languages seems to be negligible in the case of the reduced dataset and reduced features. The 

variation of model architecture remains consistent in the cases of the reduced dataset and reduced 

features. 

3.3.1 A rough estimation of carbon emission  

The above investigation can be further used to roughly estimate the amount of carbon emissions 

generated to train the selected models, and then this estimation can be tied to the predictivity and 

energy consumption of each model. One must realize that the open literature does not seem to 

contain a straightforward method to relate energy consumption of model development to carbon 

emissions as model development is governed by complex factors and is highly dependent upon the 

combination of software/hardware (e.g., type and model of CPU, GPU, processing units, etc.), 

geographical location of workstations (wherein some regions advocate for carbon neutrality by 

imposing a “carbon tax” for carbon generation and capture while others do not), and resources 

used in generating electricity (renewable resources vs. nonrenewable resources), etc. [34,78,80]. 

As such, our analysis will be based on a hypothetical scenario that applies available values as 

collected from their original resources.  

According to the U.S. Energy Information Administration, 0.42 Kg of CO2 is emitted per one kWh 

[81]. A study by the Lawrence Berkeley National Laboratory, USA, [82] estimated the unit annual 

energy consumption (AEC) for desktops to be 194 kWh/yr (with a median = 125 kWh/yr), with 

20% of desktops consuming more than 300 kWh/yr and high-end computing desktops reaching 

600 kWh/yr. While most structural engineers will be using an above average desktop in their 

modeling or a cloud computing service, this analysis opts to adopt the above estimate of 300 

kWh/yr. As such, a typical computer is expected to generate 0.42 × 300 = 126 Kg of CO2 annually.  

While the number of structural engineers in the world is not well established, Barter [83] notes 

that there are close to 50,000 structural engineers in the USA. Assuming that 2.5% of these 

engineers are proficient and dedicated ML users who use the above desktops, then applying the 

above calculation yields 0.025 × 50,000 × 126 = 126,000 Kg of CO2 annually. This is equivalent 

to emissions generated from 27.4 passenger vehicles driven for one year (about 509,619.7 km) as 

per the published estimations made by the United States Environmental Protection Agency (EPA) 

[84].  

Now, revisiting results obtained from Table 1 and Fig. 2 clearly shows that all selected models can 

be used to accurately predict if a concrete mixture can develop its design strength at in-situ 

conditions. However, a look at Fig. 5 infers the amount of possible energy savings that can be 

attained by using models of low energy consumption.  
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For illustration purposes, we take the highest energy consumption model (KDNN (1536)) in the 

case of the full dataset as a base for normalization, then a comparison between all models used in 

this particular case study can be established. This comparison is shown in Table 2 and Fig. 7 and 

infers that adopting LR, GBT (R), XGBoost, or LGBM can lead to 96%, 89%, 42%, and 27% 

reduction in CO2 as opposed to KDNN (1536). This clearly shows the significant reductions that 

can be attained by adopting simple models. Table 2 and Fig. 7 draw a similar comparison to the 

cases of the reduced dataset and the reduced features.  

Table 2 Comparison between ML models* 

Model P metric E metric Normalized P Normalized E 
% Reduction of max. 

CO2 emitted (per case) 

All features 

LR 204.3 39.43 0.44 0.04 0.96 

EN 77.2 71.92 0.17 0.08 0.92 

GBT (R) 332.3 101.93 0.72 0.11 0.89 

GBT (Python) 325.9 131.27 0.70 0.14 0.86 

VW 115.4 155.30 0.25 0.16 0.84 

KDNN (64) 40.0 183.70 0.09 0.20 0.80 

KDNN (64/64) 58.3 196.57 0.13 0.21 0.79 

RF (Python) 302.2 229.38 0.65 0.24 0.76 

KDNN (256/128/64) 57.7 302.52 0.12 0.32 0.68 

SVM 306.3 504.81 0.66 0.54 0.46 

XGBoost 464.5 542.04 1.00 0.58 0.42 

RF (R) 347.6 567.44 0.75 0.60 0.40 

TFDL 234.5 579.54 0.50 0.62 0.38 

LGBM 347.1 689.78 0.75 0.73 0.27 

KDNN (1536) 64.0 941.39 0.14 1.00 0.00 

Reduced dataset 

LR 227.9 14.93 0.75 0.01 0.99 

EN 257.8 53.08 0.85 0.03 0.97 

GBT (R) 73.5 60.31 0.24 0.04 0.96 

GBT (Python) 211.3 112.00 0.70 0.07 0.93 

VW 20.8 171.90 0.07 0.11 0.89 

KDNN (64) 224.3 80.84 0.74 0.05 0.95 

KDNN (64/64) 38.8 144.58 0.13 0.09 0.91 

RF (Python) 144.3 55.79 0.48 0.04 0.96 

KDNN (256/128/64) 41.4 269.45 0.14 0.17 0.83 

SVM 244.0 459.55 0.81 0.30 0.70 

XGBoost 183.8 409.83 0.61 0.26 0.74 

RF (R) 302.0 255.71 1.00 0.16 0.84 

TFDL 32.0 1557.37 0.11 1.00 0.00 

LGBM 130.1 1205.38 0.43 0.77 0.23 

KDNN (1536) 241.9 357.56 0.80 0.23 0.77 

Reduced features 

LR 181.93 20.31 0.55 0.01 0.99 
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GBT (R) 314.03 46.85 0.94 0.02 0.98 

EN 69.85 51.11 0.21 0.03 0.97 

RF (Python) 319.65 59.90 0.96 0.03 0.97 

KDNN (64/64) 64.12 87.18 0.19 0.04 0.96 

GBT (Python) 279.91 89.70 0.84 0.05 0.95 

KDNN (64) 35.50 92.34 0.11 0.05 0.95 

VW 160.62 92.82 0.48 0.05 0.95 

KDNN (256/128/64) 263.13 158.66 0.79 0.08 0.92 

RF (R) 314.11 243.65 0.94 0.12 0.88 

SVM 224.93 390.11 0.68 0.20 0.80 

XGBoost 332.93 427.87 1.00 0.22 0.78 

KDNN (1536) 114.73 627.19 0.34 0.32 0.68 

TFDL 96.02 1472.82 0.29 0.74 0.26 

LGBM 263.48 1986.42 0.79 1.00 0.00 
*
Values used for normalization in each particular case are underlined and in italic. 

 
Fig. 7 Estimated carbon generated per ML model 

3.4 Insights into Green ML 

The presented analysis in this study highlights the need for advocating the adoption of responsible 

and Green ML early into fully integrating ML into the structural engineering domain. As such, one 

can be ready and prepared to maximize the benefits of ML while negating some of the 

complications that might arise (e.g., unresponsible energy consumption), which may delay 

harnessing the full potential of ML in the years to come.  

The presented analysis can also be thought of as a first step towards a more articulated diagnostic 

investigation that dives in-depth to account for other dimensions that were not explored herein; 
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especially those related to software/hardware, storage, and upkeep of models, data transfer, data 

type and size, type of observations, geographical location of working stations, resources used in 

generating electricity, governance and policy aspects, etc. In a future analysis, further details on 

the number of structural engineers (and the ratio of those who are practicing ML in their works), 

preferred working stations/cloud services, and use of centralized vs. distributed computing, to 

name a few, are to be investigated. The open literature does contain a few works tackling the 

accuracy-energy trade-off front by exploring the influence of much more complex ML models 

(i.e., deep learning and natural language processing), a similar series of investigations on such 

models derivatives that can be deployed in structural engineering problems are of value to explore 

[85–87]. One particular work of interest is that carried out by García-Martín et al. [78]7, wherein 

this group presents options for hardware and software energy prediction methods – some of which 

can be used by structural engineers. These researchers also emphasized the need to investigate ML 

model energy consumption during the training phase and the inference phase. 

In addition, a comparison between the energy consumption of traditional methods (such as FE 

modeling) to that of ML, when both are applied to the same problem, can indeed be interesting to 

investigate. While both methods can potentially use similar computing stations, it would be 

interesting to examine differences in setting up such stations to optimize their performance. 

Traditionally, FE models not only require large computational capacities but also necessitate the 

presence of large storage units, which can be a fraction of that required by a simple ML model for 

the same problem – especially if the FE model utilized finer mesh and nonlinear effects.  

For example, a three-dimensional nonlinear FE model to predict the deformation history of 

reinforced concrete beams under fire conditions was developed by the author in earlier work. This 

model was composed of 50,125 elements and of a size of 64.58 MB [90]. The results from running 

this model for a typical beam yielded a file of a size of 700 MB. In a separate work [91], a ML 

model was also developed to predict the same phenomenon. This ML model was 305 KB. While 

both models were developed using different working stations approximately ten years apart, the 

truth is that both models still require storage. The American Council for an Energy-Efficient 

Economy estimates that it takes 5.12 kWh of electricity per gigabyte of transferred data. This 

implies that one GB (i.e., 1000 MB) emits 0.42 Kg × 5.12 kWh = 2.15 Kg of CO2. Thus, carbon 

emissions arising solely from storing the FE model (without the result file), excluding those arising 

from model development and simulation time, are 215 times higher than that of the ML model.  

Based on the presented analysis, the following are some of the big ideas that can be followed to 

create GML models: 

• Care should be taken when developing new ML models. In all cases, engineers should 

consider the adequacy of simple models to tackle a problem instead of blindly selecting 

complex models. The same consideration can be applied to exploring issues arising from 

the accuracy-energy trade-off.  

 
7 Other works [88,89], have made solid advancements on this front and are worthy of review. 
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• Engineers are to consider how accurate and detailed their developed model should be. In a 

similar analogy to FE modeling, the adoption of a very detailed model involves a 

significant increase in the resources allocated to developing such a model, which yields 

higher monetary and environmental costs.  

• Establish and aim for a “functional” level of model performance. Chasing accuracy metrics 

does not guarantee optimal performance, as such metrics reflect upon the model’s 

performance against the available data and may not negate falling into model behavioral 

issues (e.g., overfitting, biasness, etc.). 

• Explore pre-trained models and transfer learning techniques as a means to avoid the 

unnecessary retraining of models.  

• Whenever possible, ML users are expected to share details of their conducted analysis and 

dataset and disclose energy performance metrics.  

• Consider participating in carbon emission reduction initiatives by opting for computing 

services that employ environmental-friendly facilities.   

4. Conclusions 

This paper carries out a series of comparisons between simple and exotic ML algorithms to report 

on their predictive performance, model size, energy consumption, and storage need. More 

specifically, this work examines the influence of algorithm architecture, processing language, 

number of features, as well as dataset size on model predictivity, energy consumption, and 

expected carbon emissions. The following list of inferences can be drawn from the findings of this 

study: 

• Structural engineers are expected to be cognizant of the accuracy-energy trade-offs when 

developing future ML models. 

• Between 23-99% reduction in energy consumption and carbon emissions (while 

maintaining a similar level of accuracy) can be attained by adopting simple ML models 

and reduced-order modeling strategies. 

• Of all examined ML models, the XGBoost ranked highest in terms of predictivity, and the 

LR ranked lowest in terms of energy consumption (and carbon emittance).  

• There is an apparent influence on accuracy and energy consumption in similar ML models 

developed using different programming languages and ML models of the same origin but 

with different architectures. As such, care is needed when selecting such algorithms.  

• Additional experiments specifically designed to examine the accuracy-energy trade-off in 

terms of system architecture, computing expenditure, etc., are warranted.  

• Proactively setting the stage towards responsible and green ML is of merit to this 

community, and hence efforts in this direction are to be invited and appreciated.  
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