Please cite this paper as:

 Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." Architecture, Structures and Construction. https://doi.org/10.1007/s44150-021-00015-8

 Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences

 M.Z. Naser, PhD, PE

 School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA

Artificial Intelligence Research Institute for Science and Engineering (AIRISE) at Clemson University, Clemson, SC, 29634, USA

E-mail: mznaser@clemson.edu, m@mznaser.com, Website: www.mznaser.com

Amir H. Alavi, PhD

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA
 15261, USA

15261, USA E-mail: alavi@pitt.edu

15 Abstract

1 2

3 4

5

6

7

8

9

10

11

14

Machine learning (ML) is the field of training machines to achieve a high level of cognition and 16 17 perform human-like analysis. Since ML is a data-driven approach, it seemingly fits into our daily lives and operations and complex and interdisciplinary fields. With the rise of commercial, open-18 19 source, and user-catered ML tools, a key question often arises whenever ML is applied to explore 20 a phenomenon or a scenario: what constitutes a good ML model? Keeping in mind that a proper answer to this question depends on various factors, this work presumes that a good ML model 21 22 optimally performs and best describes the phenomenon on hand. From this perspective, identifying 23 proper assessment metrics to evaluate the performance of ML models is not only necessary but is 24 also warranted. As such, this paper examines 78 of the most commonly-used performance fitness 25 and error metrics for regression and classification algorithms, with emphasis on engineering 26 applications.

27

28 *Keywords:* Error metrics; Machine learning; Regression; Classification.

2930 1. Introduction

Learning is the process of seeking knowledge [1]. We, as humans, can learn from our daily 31 32 interactions and experiences because we have the ability to communicate, reason, and understand. 33 With the rapid technological advancement in computer sciences, computational intelligence has 34 led to the development of modern cognitive and evaluation tools [2, 3]. One such tool is machine 35 learning (ML) which is often described as a set of methods that, when applied, can allow machines 36 to learn/understand meaningful patterns from data repositories; while maintaining minimal human 37 interaction [4]. More specifically, a "computer program is said to learn from experience E with 38 respect to some class of tasks T and performance measure P, if its performance at tasks in T, as 39 measured by P, improves with experience E" [5]. In other words, ML trains machines to 40 understand real-world applications, use this knowledge to carry out pre-identified tasks with the

41 goal of optimizing and improving the machines' performance with time and new knowledge. A

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

42 closer look at the definition of ML infers that computers do not learn by reasoning but rather by43 algorithms.

44

45 From the perspective of this work, traditional statistical regression techniques are often used to 46 carry out behavioral modeling wherein such techniques may suffer from large uncertainties, the need for the idealization of complex processes, approximation, and averaging widely varying 47 48 prototype conditions. Furthermore, statistical analysis often assumes linear, or in some cases 49 nonlinear, relationships between the output and the predictor variables, and these assumptions do not always hold true - especially in the context of engineering/real data. On the other hand, ML 50 51 methods adaptively learn from experiences and extract various discriminators. One of the major 52 advantages of ML approaches over the traditional statistical techniques is their ability to derive a 53 relationship(s) between inputs and outputs without assuming prior forms or existing relationships. 54 In other words, ML approaches are not confined to one particular space that requires the 55 availability of physical representation but rather goes beyond that to explore hidden relations in 56 data patterns [6–11].

57

58 While ML was initially developed for computer sciences, it is now an integral part of various fields 59 including, energy/mechanical engineering [6–9], social sciences [10, 11], space applications [12,

including, energy/mechanical engineering [6–9], social sciences [10, 11], space applications [12, 13], among others [14–19]. Due to the availability of high-computationally powered machines and
ease-of-access to data (thanks in part to the rise of Internet-of-Things and data-drivenapplications), the utilization of ML into civil engineering, in general, and materials science,
engineering in particular, has been duly noted in recent years [20–25].

64

65 An integral part of the wide spread of integrating ML into new research areas is due to the availability of user-friendly and easy-to-use software packages that simplifies the process of ML 66 67 by utilizing pre-defined algorithms and training/validation procedure [26–30]. The availability of 68 such tools, while facilitating ML analysis and providing new opportunities for researchers often 69 unfamiliar with the ML fundamentals with means to easily carry out such analysis, could still be 70 misused by providing a false sense of analysis interpretation [31]. Another concern of utilizing 71 user-ready approaches to carry out ML analysis lies in the need for compiling proper observations (i.e. datapoints). In some classical fields (say material sciences, earthquake or fire engineering) 72 73 where there is a limited number of observations due to expensive tests, or need for specialized 74 instrumentation/facilities [32], then the use of ML may lead to a biased outcome – especially when 75 combined with lack of expertise on ML [33, 34].

76

An examination of open literature raises a few questions: 1) are we developing accurate ML
models? 2) are such models useful to our fields? 3) are we properly validating ML models? And
4) how to confidently answer "yes" to the aforementioned questions?

80

81 A distinction should be drawn in which we need to acknowledge that, we often apply existing ML

82 algorithms to our problems rather than developing new algorithms. This acknowledgment goes

83 hand in hand with that similar to applying other numerical tools such as the finite element method,

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

to investigate the response of materials and structures (say concrete beams) under harsh 84 85 environments (i.e. fire conditions) [35, 36]. From this perspective, we use an existing tool, say a finite element (FE) software (ANSYS [37], ABAQUS [38] etc.), to investigate how failure 86 mechanism occurs in a concrete beam under fire. The accuracy of this FE model is often 87 88 established through a validation procedure in which a comparison of predictions from the FE 89 model (say temperature rise in steel rebars or mid-span deflection during a fire, or in some cases, 90 point in time when the beam fails) is plotted against that measured in an actual fire test. If the 91 comparison is deemed well, then the FE model is said to be valid and hence can be used to explore 92 the effect of key response parameters (i.e. magnitude of loading, strength of concrete, intensity of 93 fire etc.). From this perspective, the validity of an FE model is established if the variation between 94 predicted results and measured observations is between 5-15%^{*} [39].

95

96 Unlike the use of FE simulation, ML is often used in two domains: 1) to show the applicability of 97 ML to understand a phenomenon [40, 41], and 2) to identify hidden patterns governing a 98 phenomenon [33, 42]. In the first domain, ML is primarily used to show that an ML algorithm can 99 replicate a phenomenon – or in other words, to validate the applicability of that particular ML 100 algorithm to a material science problem (i.e. can deep learning be applied to predict the 101 compressive strength of concrete given that information regarding the components in a concrete 102 mix is available?). While works in this domain showcase the diversity of ML, these also provide 103 an additional validation platform/case studies to already well-established algorithms. The 104 contribution of such works to our knowledge base is to be thanked and acknowledged.

105

The second domain is where ML shines and can be proven as a powerful ally to researchers. This is because ML strives on data and is designed to explore hidden features and patterns. The integration of these two items has not been thoroughly applied into our fields and, if applied properly, cannot only open new opportunities but also revolutionize our perspective into our fields. Unfortunately, the open literature continues to lack works in this domain, and hence such works are to be encouraged.

112

113 Whether ML is used in the first or second domain, ML models need to be rigorously assessed [43,

44]. This is a critical key to ensure: 1) the validity of the developed ML model in understanding a

115 complex phenomenon given a limited set of data points, and 2) proper extension of the same

116 models towards new/future datasets. Traditionally, the adequacy of ML models is often established

117 through performance fitness and error metrics (PFEMs). Performance and error measures are vital

elements in the process of evaluating ML models/frameworks. These are defined as logical and/or

119 mathematical constructs intended to measure the closeness of actual observations to that expected

- 120 (or predicted). In other words, PFEMs are used to establish an understanding of how predictions
- from a model compare to real (or measured) observations. Such metrics often relate to the variation
- between predicted and measured observations in terms of errors [45–47].

^{*}One should note that the validation of an FE model is also governed by satisfying convergence criteria input in the FE software. More on this can be found elsewhere [37, 38].

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

123 Diverse sets of performance metrics have been noted in the open literature i.e. correlation 124 coefficient (R), root mean squared error (RMSE), etc. In practice, one, a multiple, or a combination 125 of metrics are used to examine the adequacy of a particular ML model. However, there does not 126 seem to be a systematic view into which scenarios specific metrics are preferable to use. In order 127 to bridge this knowledge gap, this work compiles the commonly-used PFEMs and highlights their 128 use in evaluating the performance of regression and classification ML models.

129

130 **2. Performance Fitness and Error Metrics**

131 This section presents the most widely-used PFEMS and highlights fundamentals, 132 recommendations, and limitations associated with their use in assessing ML models[†]. In this work, 133 PFEMs are grouped under two categories; traditional and modern. In this section, these reoccurring

terms are used; A: actual measurements, P: predictions, n: number of data points.

- 135
- 136 2.1 Regression

Regression ML methods deal with predicting a target value using independent variables. Some of
these methods include artificial neural networks, genetic programing, etc. PFEMs grouped herein
belong to a group of metrics that are based on methods to calculate point distance primarily using

subtraction or division operations. These metrics contain fundamental operations, either *A-P* or

141 P/A, and can be supplemented with absoluteness or squareness. These are the most widely-used

142 metrics in literature. The simplest form of common PFEMs results from subtracting a predicted

143 value from its corresponding actual/observed value. This is often straightforward, easy to interpret,

and most of all yields the magnitude of error (or difference) in the same units as those measured

145 and predicted and can indicate if the model overestimates or underestimates observations (by

146 analyzing the sign of the reminder). One should remember that an issue could arise where due to

147 the opposite between predictions and observations i.e. canceling positive and negative errors. In

- 148 this scenario, a zero error could be calculated, indicating false accuracy.
- 149

150 This can be avoided by using an absolute error (i.e. |A-P|) which only yields non-negative values.

151 Analogous to traditional error, the absolute error also maintains the same units of predictions (and

152 observations), and hence is easily relatable. However, due to its nature, the bias in absolute errors

- 153 cannot be determined.
- 154

Similar to the same concept of absolute error, the squared error also mitigates mutual cancellation of errors. This metric can be continuously differentiable and thus facilitates optimization. However, this metric emphasizes relatively large errors (as opposed to small errors), unlike absolute error, and could be susceptible to outliners. The fact that the units of squared error is

squared leads to unconventional units for error (i.e. squared days); which are not intuitive. Other

metrics may also include logarithmic quotient error (i.e. ln(P/A)) as well as absolute logarithmic

[†] It should be noted that other works have used a different classification for PFEMs [2]. Botchkarev [2] went even further to survey the most preferred metrics reported by researchers during the 1980-2007 era and also explored multiplication and addition point distance methods.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

161 quotient error (i.e. |ln(P/A)|). Table 1 lists other commonly used metrics, together with some of 162 their limitations and shortcomings as identified by surveyed studies. Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

163 Table 1 List of commonly used PFEMs for ML regression models as collected from open literature

No.	Metric	Definition	Formula	Remarks
		The amount by which an		• Intuitive
1	Error (E)	observation differs from its actual	E = A - P	• Easy to apply
		value.		Works with numeric data
2	Mean error	T1	$\sum_{i=1}^{n} E_i$	• May not be helpful in cases where positive and negative
2	(ME)	The average of all errors in a set.	$ME = \frac{1}{n}$	• Works with numeric data
	Mean	Associated with observation-		• works with numeric data
3	Normalized	hased minimum threshold	$MNP = \sum_{i=1}^{n} E_i / A_i$	Biased towards overestimations.
5	Bias (MNB)	based minimum threshold.	$MNB = \frac{n}{n}$	Works with numeric data
	Mean	~	$\sum_{n=1}^{n}$	
4	Percentage	Computed average of percentage	$MPE = \frac{\sum_{i=1}^{L} E_i / A_i}{(100)}$	• Undefined whenever a single actual value is zero.
	Error (MPE)	errors.	n/100	• Works with numeric data
	Mean	Mangurag the difference between	$\sum_{n=1}^{n} F_n $	• Uses a similar scale to input data [48].
5	Absolute	two continuous variables	$MAE = \frac{\sum_{i=1}^{n} D_i }{m}$	• Can be used to compare series of different scales.
	Error (MAE)*		n	Works with numeric data
				• Commonly-used as a loss function [49]
				• Cannot be used if there are actual zero values.
	Mean		n	• Percentage error cannot exceed 1.0 for small predictions.
6	Absolute	Measures the extent of error in	$MARE = \frac{100}{5}\sum_{i=1}^{n} \frac{1}{10}$	• There is no upper limit to percentage error in predictions
0	Fricentage	percentage terms.	$MAPE = \frac{1}{n} \sum_{i=1}^{ E_i / A_i }$	• Non symmetrical (adversaly affected if a predicted value
	(MAPE)*		<i>t</i> =1	• Non-symmetrical (adversely affected if a predicted value) is larger or smaller than the corresponding actual value)
	()			[49].
				• Works with numeric data
	Relative	Expressed as a ratio comparing	n	• E ranges from zero (being ideal) to infinity
7	Absolute	the mean error to errors produced	$RAE = \sum_{i} E_i / A_i - A_{mean} $	• Works with numeric data
	Error (RAE)	by a trivial model.	<i>i</i> =1	
	Mean		71	
0	Absolute	Measures the average ratio of	$MARE = \frac{1}{2}\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \frac{1}{i$	• Sensitive to outliers (especially of low values).
0	Frror	error	$MARE = \frac{1}{n}\sum_{i=1}^{n} E_i / A_i $	• Division by zero may occur (ii actuals contain zeros).
	(MARE)		l=1	• Works with numeric data
	Mean			
	Relative	Ratio of accumulation of errors to	$\sum_{n=1}^{n} F_n / A_n - A_n $	• For a perfect fit the numerator equals to zero [50]
9	Absolute	cumulative error of random	$MRAE = \frac{\sum_{i=1}^{n} L_i / A_i - A_{mean} }{\pi}$	• Works with numeric data
	Error	error.	n	• Works with numeric data
	(MRAE)			
	Geometric			• GMAE is more appropriate for averaging relative
10	Mean	Defined as the n-th root of the		quantities as opposed to arithmetic mean [51].
10	Frror	product of error values.	$GMAE = \prod_{i} \prod_{i=1}^{ E_i }$	• This metric can be dominated by large outliers and minor errors (i.e. close to zero)
	(GMAE)*		$\sqrt{i=1}$	• Works with numeric data
	Fractional		$1\frac{n}{2}$ $2\times E $	
11	Absolute	Evaluates the absolute fractional	$FAE = \frac{1}{2} \sum \frac{2 \times E_i }{ A + B }$	• Works with numeric data
	Error (FAE)	error.	$n \underset{i=1}{\overset{\frown}{\underset{i=1}{\frown}}} A_i + P_i $	
				• Scale dependent [52].
	Mean Squared	Measures the average of the	———	Values closer to zero present adequate state
12			$MSF = \frac{\sum_{i=1}^{n} E_i^2}{\sum_{i=1}^{n} E_i^2}$	• Heavily weights outliers.
	Error (MSE)	squares of the errors.	n n	• Highly dependent on fraction of data used (low reliability)
				[03]. • Wards with avarania data
				Scale dependent
	Root Mean			• A lower value for RMSE is favorable
	Squared	Root square of average squared	$\sum^n F^2$	Sensitive to outliers
13	Error	error.	$RMSE = \left \frac{\Delta_{i=1} \Delta_{i}}{m} \right $	• Highly dependent on fraction of data used (low reliability)
	(RMSE)		$\sqrt{-n}$	[53].
				• Works with numeric data
	Sum of	Sums the squared differences	n N c	• A small SSF indicates a tight fit [54]
14	Squared	between each observation and its	$SSE = \sum E_i^2$	• Works with numeric data
	Error (SSE)	mean.	<u>i=1</u>	
15	Relative	Normalizes total squared error by	$\sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{j$	• A perfect fit is achieved when the numerator equals to
15	Squared Error (RSE)	error	$ASL = \sum_{i=1}^{L_i} L_i / (A_i - A_{mean})^2$	ZEIU [JU]. • Works with numeric data
	Root Relative	Evaluates the root relative	$\sum_{n=1}^{n}$	• Ranges between zero and 1, with zero being ideal [50].
16	Squared	squared error between two	$RRSE = \sum E_i^2 / (A_i - A_{mean})^2$	• Works with numeric data
	EITOT (KKSE)	vectors.	$\sqrt{i=1}$	
	Geometric			
	Root Mean	Evaluates the geometric root	$2n \left \frac{n}{1} \right ^2$	• Scale dependent.
17	Squared	squared errors.	$GRMSE = E_i^2$	• Less sensitive to outliners than RMSE [52].
	Error (GRMSF)	-	$\sqrt{\overline{i=1}}$	• works with numeric data
	Mean Square			
10	Percentage	Evaluates the mean of square	$\sum_{i=1}^{n} (E_i / A_i)^2$	• Non-symmetrical [49].
18	Error	percentage errors.	$MSPE = \frac{1}{n/100}$	• Works with numeric data
	(MSPE)*		,	
	Root Mean			• Scale independent.
10	Square	Evaluates the mean of souared	$\sum_{i=1}^{n} (E_i / A_i)^2$	• Can be used to compare predictions from different
19	Percentage	errors in percentages.	$RMSPE = \left \frac{-1}{n/100} \right $	datasets.
	(RMSPF)*		N,	Non-symmetrical [49]. Works with numeric data
L		l		

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

				• An extension of RMSE
20	Normalized Root Mean Squared Error (NRMSE)**	Normalizes the root mean squared error.	$NRMSE = \frac{\sqrt{\frac{\sum_{i=1}^{n} E_{i}^{2}}{n}}}{A_{mean}}$	 Can be used to compare predictions from different datasets [55]. Works with numeric data An extension of RMSE
21	Normalized Mean Squared Error (NMSE)	Estimates the overall deviations between measured values and predictions.	$NMSE = \frac{\frac{\sum_{i=1}^{n} E_i^2}{n}}{variance^2}$ $variance = \frac{\sum (x_i - mean)^2}{n - 1}$	 Biased towards over-predictions [56]. Works with numeric data An extension of MSE
22	Coefficient of Determinatio n (R ²)	The square of correlation.	$R^{2} = 1 - \sum_{i=1}^{n} (P_{i} - A_{i})^{2} / \sum_{i=1}^{n} (A_{i} - A_{mean})^{2}$	 R² values close to 1.0 indicate strong correlation. Can be used in predicting material properties. Works with numeric data Related to R
23	Correlation coefficient (R)	Measures the strength of association between variables.	$R = \frac{\sum_{i=1}^{n} (A_i - \overline{A}_i)(P_i - \overline{P}_i)}{\sqrt{\sum_{i=1}^{n} (A_i - \overline{A}_i)^2 \sum_{i=1}^{n} (P_i - \overline{P}_i)^2}}$	 R>0.8 implies strong correlation [57]. Does not change by equal scaling. Can be used in predicting material properties. Works with numeric data
24	Mean Absolute Scaled Error (MASE)	Mean absolute errors divided by the mean absolute error.	$\frac{\sum_{i=1}^{n} \frac{E_i}{A_i}}{n/100} / (\frac{1}{n} - 1) \sum_{i=1}^{n} A_i - A_{i-1} $	 Scale independent. Stable near zero [52]. Works with numeric data
25	Golbraikh and Tropsha's [58] criterion		At least one slope of regression lines (k or k') between the regressions of actual (A _i) against predicted output (P _i) or P _i against A _i through the origin, i.e. A _i = k×P _i and P _i = k'A _i , respectively. $k = \frac{\sum_{i=1}^{n} (A_i \times P_i)}{A_i^2}$ $k' = \frac{\sum_{i=1}^{n} (A_i \times P_i)}{P_i^2}$ $m = \frac{R^2 - R_o^2}{R^2}$ $n = \frac{R^2 - R_o'^2}{R^2}$	 <i>k</i> and <i>k'</i> need to be close to 1 or at least within the range of 0.85 and 1.15. <i>m</i> and <i>n</i> are performance indexes and their absolute value should be lower than 0.1. Works with numeric data
26	QSAR model by Roy and Roy [59]	-	$R_{m} = R^{2} \times (1 - \sqrt{ R^{2} - R_{o}^{2} })$ where, $- \frac{\sum_{i=1}^{n} (P_{i} - A_{i}^{o})^{2}}{\sum_{i=1}^{n} (P_{i} - P_{mean})^{2}}, A_{i}^{o} = k \times P_{i} R'_{o}^{2}$ $= 1 - \frac{\sum_{i=1}^{n} (A_{i} - P_{i}^{o})^{2}}{\sum_{i=1}^{n} (A_{i} - A_{mean})^{2}}, P_{i}^{o} = k' \times A_{i}$	 <i>R_m</i> is an external predictability indicator. <i>R_m</i> > 0.5 implies a good fit. Works with numeric data
27	Frank and Todeschini [60]	-	Recommend maintaining a ratio of 3-5 between the number of observations and input parameters.	-
28	Objective function by Gandomi et al. [61]	A multi-criteria metric.	$\begin{aligned} Function \\ &= (\frac{No{Training} - No{Validation}}{No{Training} + No{Validation}}) \frac{RMSE_{Training} + MAE_{Learning}}{R_{Learning} + 1} \\ &+ \frac{2No{Validation}}{No{Training} + No{Validation}} \frac{RMSE_{Validation} + MAE_{Validation}}{R_{Training} + 1} \\ &+ where, No{Training} and No{Validation} are the number of training and validation data, respectively. \end{aligned}$	 This function needs to be minimized to yield highest fitness. Can be used in predicting material properties. Works with numeric data
29	Reference index (RI) by Cheng et al. [62]	A multi-criteria metric that uniformly accounts for RMSE, MAE and MAPE.	$RI = \frac{RMSE + MAE + MAPE}{3}$	 Each fitness metric is normalized to achieve the best performance. Works with numeric data An extension of RMSE, MAE and MAPE
30	Scatter index (SI) [63]	Applied to examine whether RMSE is good or not.	$SI = \frac{\sqrt{\sum_{i=1}^{n} (P_{max(A)} - P_{max(p)})^{2}}}{P_{max(p)}}$ where, $n = number$ of data sets used during the training phase. $P_{max(p)} = mean$ actual observations data	 SI is RMSE normalised to the measured data mean If SI is less than one, then estimations are acceptable. Works with numeric data "excellent performance" when SI < 0.1, a "good performance" when 0.1 < SI < 0.2, a "fair performance" when SI > 0.3
31	Synthesis index (SyI) [64]	Comprehensive performance measure a based on MAE, RMSE, and MAPE a	$SyI = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{P_i - P_{\min,i}}{P_{\max,i} - P_{\min,i}} \right)$ where, $n = number$ of performance measures; and $P_i = \underline{i}$ th performance measure.	 The SI ranged from 0 to 1; an SI value close to 0 indicated a highly accurate predictive model. Works with numeric data
32	Relative root mean squared error (RRMSE) [65]	Present percentage variation in accuracy	$RRMSE = \sqrt{\frac{1}{n}\Sigma(A-P)^2}$	 Lower RRMSE values result in more accurate model predictions. Works with numeric data
33	Performance index (PI) [65]	Performance index to evaluate predictivity of a model	$PI = \frac{RRMSE}{1+R}$	 Lower PI values result in more accurate model predictions. Works with numeric data

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

34	a20-index [66]	Performance index to evaluate predictivity of a model within 20% variation	$a_{20-index} = \frac{m_{20}}{M}$ where, m_{20} is the number of samples with the ratio of experimental value over predicted value falling from 0.8 to 1.2 and M is the number of samples in the dataset.	 Presents the number of samples with the difference between the predicted value and experimental value within ±20% Works with numeric data
35	Fractional bias (FB) [67]	Measure of the shift between the observed and predicted values.	$FB = \frac{2\sum_{i=1}^{n} (A - P)}{\sum_{i=1}^{n} (A + P)}$	 Dimensionless metric, which is convenient for comparing the results from studies involving different scales Symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction) Perfect model has FB of zero. Works with numeric data
36	Relative index of agreement (RD) [68]	A standardized measure of the degree of model prediction error	$RD = 1 - \frac{\sum_{i=1}^{N} (\frac{A-P}{A})}{\sum_{i=1}^{N} (\frac{(P-\overline{A} + A-\overline{A})}{\overline{A}})^{2}}$	 A value of 1.0 indicates a perfect match, and zero indicates no agreement at all. Overly sensitive to extreme values Works with numeric data
37	Nash– Sutcliffe coefficient (NSE) [69]	A metric often used in flow predictions.	NSE = $1 - \left[\frac{\sum_{i=1}^{N} (A - P)^2}{\sum_{i=1}^{N} (A - \overline{A})^2}\right]$	 NSE = 1 indicates perfect correspondence NSE = 0 indicates that the model simulations have the same explanatory power as the mean of the observations NSE < 0 indicates that the model is a worse predictor than the mean of the observations Works with numeric data
38	Kling–Gupta efficiency (KGE) [70]	A metric often used in flow predictions.	KGE = $1 - \sqrt{(r-1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}$, where, <i>r</i> is the linear correlation between the predicted and actuals. α is the magnitude of the variability calculated as the standard deviation in predictions divided by the standard deviation in actuals. β is the bias term calculated as the predictions means divided by the actual mean. <i>N</i> is the number of dataset over the training and testing phases.	 KGE = 1 indicates perfect agreement between actuals and predictions. KGE < 0 indicates that the mean of actuals provides better estimate than predictions For other values of KGE, please refer to [71] Works with numeric data

*has a median derivative

165 **can be normalized by standard deviation of actual observations

166 ***The reader is encouraged to review the cited references for full details on specific metrics.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

167 Most of the works conducted so far in the areas of engineering applications only utilized a few of 168 the above PFEMs [20, 33, 61, 62, 72–92]. The bulk of the reviewed works continue to incorporate 169 traditional metrics such as $R, R^2, MAE, MAPE$, and RMSE as primary indicators of adequacy of 170 the regression-based ML models. This seems to stem from our familiarity with these indicators, as 171 opposed to others; such as Golbraikh and Tropsha's [58] criterion, QSAR model by Roy and Roy [59], Frank and Todeschini [60], and specifically designed objective functions, often used in the 172 173 realms of other fields and data sciences. It should be noted that out of the reviewed studies, the 174 works of Gandomi et al. [90], Golafshani and Behnood [40] as well as Cheng et al. [62] applied a 175 multi-criteria verification process that incorporated the use of traditional as well as modern 176 PFEMs. Utilizing multi-criteria is not only beneficial to ensure the validity of a particular ML 177 model but is also recommended to overcome some of the identified limitations of traditional 178 metrics in Table 1 and hence should be encouraged.

- 179
- 180 *2.2 Classification*

In ML, classification refers to categorizing data into distinct classes. This is a supervised learning approach where machines learn to classify observations into binary or multi-classes. Binary classes are those with two labels (i.e. positive vs. negative etc.), and multi-classes are those having more than two labels (i.e. types of concrete e.g., normal strength, high strength, high performance etc.).

than two labels (i.e. types of concrete e.g., normal strength, high strength, high performance etc.).

185 Classification algorithms may include logistic regression, k-nearest neighbors, support vector 186 machines, etc. [93, 94].

187

188 The performance of classifiers is often listed in a confusion matrix. This matrix contains statistics 189 about actual and predicted classifications and lays the fundamental foundations necessary to 190 understand accuracy measurements for a specific classifier. Each column in this matrix signifies 191 predicted instances, while each row represents actual instances. This matrix was identified to be 192 the "go-to" metric used in studies examining materials science and engineering problems [22, 95-193 98]. However, there are other PFEMs that can be used to evaluate classification models, and these, 194 along with others, are listed in Table 2. Similar to Table 1, Table 2 also lists some of the remarks 195 and limitations pointed out by surveyed works. In this table, P (denotes number of real positives),

196 N (denotes number of real negatives), TP (denotes true positives), TN (denotes true negatives), FP

197 *(denotes false positives), and FN (denotes false negatives).*

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

198	Table 2 List of the commonly-used PFEMs for ML classification models as collected from open literature	e
-----	--	---

No.	Metric	Definition	Formula	Remarks
1	True Positive Rate (TPR) or Sensitivity or Recall	Measures the proportion of actual positives that are correctly identified as positives.	$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$	 Describes the proportion of actual positives that are correctly identified. Does not account for indeterminate results. Works with categorial data
2	True Negative Rate (TNR) or Specificity or selectivity	Measures the proportion of actual negatives that are correctly identified negatives.	$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$	 Describes the proportion of actual negatives that are correctly identified. Works with categorial data
3	Positive Predictive Value (PPV) or Precision	The proportions of positive observations that are true positives.	$PPV = \frac{TP}{TP + FP} = 1 - FDR$	 Has an ideal value of 1 and the worst value of zero. Works with categorial data
4	Negative Predictive Value (NPV)	The proportions of negative observations that are true positives.	$NPV = \frac{TN}{TN + FN} = 1 - FOR$	 Has an ideal value of 1 and the worst value of zero. Works with categorial data
5	False Positive Rate (FPR)	Measures the proportion of positive cases in that are correctly identified as positives.	$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$	 Describes proportion of negative cases incorrectly identified as positive cases. Works with categorial data
6	False Discovery Rate (FDR)	Expected proportion of false observations.	$FDR = \frac{FP}{FP + TP} = 1 - PPV$	 Describes proportion of the individuals with a positive test result for which the true condition is negative. Works with categorial data
7	False Omission Rate (FOR)	Measures the proportion of false negatives that are incorrectly rejected.	$FDR = \frac{FN}{FN + TPN} = 1 - NPV$	 Describes proportion of the individuals with a negative test result for which the true condition is positive. Works with categorial data
8	Positive likelihood ratio (LR+)	Evaluates the change in the odds of having a diagnosis with a positive test.	$LR += \frac{TPR}{FPR}$	 Measures the ratio of TPR (sensitivity) to the FPR (1 – specificity). Presents the likelihood ratio for increasing certainty about a positive diagnosis. Works with categorial data
9	Negative likelihood ratio (LR-)	Evaluates the change in the odds of having a diagnosis with a negative test.	$LR -= \frac{FNR}{TNR}$	 Describes the ratio of FNR to TNR (specificity). Works with categorial data
10	Diagnostic odds ratio (DOR)	Measures the effectiveness of a (diagnostic) test.	$DOR = \frac{LR +}{LR -} = \frac{TP/FP}{FN/TN}$	Often used in binary classification.Works with categorial data
11	Accuracy (ACC)	Evaluates the ratio of number of correct predictions to the total number of samples.	$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$	 Presents performance at a single class threshold only. Assumes equal cost for errors [96]. Works with categorial data
12	F ₁ score	Harmonic mean of the precision and recall.	$F_1 = \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	 Describes the harmonic mean of precision and sensitivity. Focuses on one class only. Biased to the majority class [99]. Works with categorial data
13	Matthews Correlation Coefficient (MCC)	Measures the quality of binary classifications analysis.	$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + PN)}}$	 Measures the quality of binary and multi-class classifications. Can be used in classes with different sizes. When MCC equals +1 → perfect prediction, → 0 equivalent to a random prediction and → -1 false prediction. Considered as a balanced measures as it involves values of all the four quardants of a confusion matrix [100]. Works with categorial data
14	Bookmaker Informedness (BM) or Youden's J statistic	Evaluates the discriminative power of the test [101].	BM = TPR + TNR - 1	 Describes the probability of an informed decision (vs. a random guess). Has a range between zero and 1 (being ideal). Considers both real positives and real negatives. Takes into account all predictions [102]. Works with categorial data Counterpart of recall. It is also suitable with imbalanced data. It does not change concerning the differences between the sensitivity and specificity [101].
15	Markedness (MK)	Measures trustworthiness of positive and	MK = PPV + NPV - 1	• Measures trustworthiness of positive and negative predictions by a model [103].

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

		negative predictions.		 Considers both predicted positives and predicted negatives. Counterpart of precision. Specifies the probability that a condition is marked by the predictor (as opposed to luck/chance) [104] Sensitive to data changes (not suitable for imbalanced data) [101]. Works with categorial data
16	Average Class Accuracy (ACA)	Measures the average accuracy of predictions in a class.	$ACA = W\left(\frac{TP}{TP + FP}\right) + (1 - W)\left(\frac{TN}{TN + FP}\right)$ where 0 < W < 1	 Used with unbalanced data. Choosing a good weighting factor a priori [99]. When W > 0.5, minority class accuracy contributes more than majority class. Presents performance at a single class threshold. Works with categorial data
17	Receiver Operating Characteristic (ROC)	Plots the diagnostic ability of a binary classifier system as its discrimination threshold is varied.	The ROC curve is plotted such that TPR is on vertical axis and FPR is on the horizontal axis (the line $TPR = FPR$ represents a random guess of a specific class) [105].	 Characterizes tradeoff between hit rate and false alarm rate. Designates the relationship between sensitivity and specificity [106]. Takes a value between zero and 1 to relate the probability distribution to a single state [107]. A threshold of zero ensures highest sensitivity and 1 ensures best specificity. Can be used to estimate cost ratio (slope of line tangent to ROC curve). Should be used in datasets with roughly equal numbers of observations for each class [108, 109]. Works with categorial data
18	Area under the ROC curve (AUC)	Measures the two- dimensional area underneath the entire ROC curve.	$AUC = \sum_{i=1}^{N-1} \frac{1}{2} (FP_{i+1} - FP_i) (TP_{i+1} - TP_i)$ or $AUC = \frac{1}{2} w (h + h'),$ where, w = width, and h and h' = heights of the sides of a trapezoid histogram	 Not dependent on a single class threshold. Associated with increased training times. Works with categorial data
19	Precision- Recall curve	Plots the tradeoff between precision and recall for different thresholds.	Plots precision (in the vertical axis) and the recall (in the horizontal axis) for different thresholds.	 Applicable in cases of moderate to large class imbalance [108]. Used in binary classification.
20	Log Loss Error (LLE)	Measures the where the prediction input is a probability value.	$LLE = -\sum_{c=1}^{M} A_i log P,$ where, M: number of classes, c: class label, y: binary indicator (0 or 1) if c is the correct classification for a given observation.	 Measures the uncertainty of the probabilities by comparing predictions to the true labels. Penalizes for being too confident in wrong prediction. Has probability between zero and 1. A log loss of zero indicates a perfect model. Works with categorial data
21	Hinge Loss Error (HLE)	-	$HLE = max(0, 1 - q \cdot y)$ where, $q = \pm 1$ and y: classifier score	 Linearly penalize incorrect predictions. Primarily used in support vector machine.
22	Wilcoxon– Mann–Whitney (WMW) test [99]	-	$WMW = \frac{\sum_{i \in Minor \ class} \sum_{i \in Major \ class} I_{wmw}(P_i, P_j)}{ Minor \ class \times Major \ class },$ where, P_i and P_j : outputs when evaluated on an example from the minority and majority classes, respectively	 Used in scenarios with unbalanced data. The indicator function <i>I_{wmw}</i> returns 1 if <i>P_i</i> > <i>P_j</i> and <i>P_i</i> ≥ 0 or 0 if otherwise.
23	Fitness Function Amse (FFA) [99]	Measures pattern difference between input and output.	$FFA = \frac{1}{K} \sum_{c=1}^{K} \left(1 - \frac{\sum_{i=1}^{N_c} (1 - sig(P_{ci}) - T_c)}{N_c \times 2} \right)^2,$ $sig(x) = \frac{2}{1 + e^{-x}} + 1$ where, P_{ci} : output of a classifier evaluated on the ith example, N_c : number of examples, K: number of classes, T_c : target values (equals to -0.5 and 0.5 for majority and minority classes, respectively)	 Used in scenarios with unbalanced data. Appropriate for genetic programing. Needs to be scaled to a range of [-1, 1] and hence the need for sigmoid function. FFA = 1 presents an ideal scenario.
24	Fitness Function <i>Incr</i> (FFI) [99]	-	$Incr = \frac{1}{K} \sum_{c=1}^{K} \left(\frac{\sum_{j=1}^{M_c} [I_{zt}(j, D_{cj}, c) \cdot \sum_{i=1}^{N_c} Eq(D_{cj}, P_{ci})]}{\frac{1}{2} N_c(N_c + 1)} \right)$ $I_{zt}(r, k, c) = \begin{cases} r, & \text{if } k \ge 0 \text{ and } c \in \text{Minority class} \\ 0, & \text{or if } k < 0 \text{ and } c \in \text{Majority class} \\ 0, & \text{otherwise} \end{cases}$ $Eq(p, q) = \begin{cases} 1, & \text{if } p = q \\ 0, \text{otherwise} \end{cases}$	 Used in scenarios with unbalanced data. Assigns incremental rewards to predictions that fall further away from the class boundary. Appropriate for genetic programming. Ranges [0, 1] (zero being worst fitness).
25	Fitness Function Correlation (FFC)	-	$FFC = \frac{1}{K} \left(r + I_{zt} (1, \mu_{minor}, \mu_{major}), \\ r = \sqrt{\frac{\sum_{c=1}^{K} N_c (\mu_c - \bar{\mu})^2}{\sum_{c=1}^{K} \sum_{i=1}^{N_c} (P_{ci} - \bar{\mu})^2}} \\ \mu_c = \frac{\sum_{i=1}^{N_c} P_{ci}}{N_c}, \ \bar{\mu} = \frac{\sum_{c=1}^{K} N_c \mu_c}{\sum_{c=1}^{K} N_c}. \\ where, r: correlation ratio, \mu_{minor} \\ and \mu_{major}: mean for minor and major classes, respectively$	• Used in scenarios with unbalanced data.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

26	Fitness Function Distribution (FFD)	Measures the distance between class distributions as a function of class separability.	$FFD = \frac{ \mu_{min} - \mu_{maj} }{\sigma_{min} + \sigma_{maj}} \times I_{zt}(2, \mu_{min}, \mu_{maj})$ $\mu_c = \frac{\sum_{i=1}^{N_c} P_{ci}}{N_c}, \ \sigma_c = \sqrt{\frac{1}{N_c} \sum_{i=1}^{N_c} (P_{ci} - \mu_c)^2}.$ where, μ_c and σ_c : mean and standard deviation of the class distribution, respectively,	 Used in scenarios with unbalanced data. Treats predictions as independent distributions. Measures separability (i.e. distance between class distributions) [110] – high separability (no overlap) and this distance turns large (go to +∞). Uses <i>I</i>_{zt} to enforce zero class threshold.
27	Canberra Metric (CM)	Measures the distance between pairs of points in a vector space.	$CM = \sum_{i=1}^{n} \frac{ E_i }{A_i + P_i}$	-
28	Wave Hedges Distance (WHD)	-	$WHD = \sum_{i=1}^{n} \frac{ E_i }{max (A_i, P_i)}$	• Normalizes the difference of each pair of coefficients with its maximum [111–113].
29	Lift [114]	Measures the performance of a model at predicting or classifying cases.	$LIFT = \frac{\% of true \ positives \ above \ the \ threshold}{\% of \ dataset \ above \ the \ threshold}$	 Measures betterness of a classifier than a baseline classifier that randomly predicts positives. Threshold is set as a static fraction of the positive dataset. Lift and Accuracy do not always correlate well.
30	Mean Cross Entropy (MXE)	Measures the performance of a model where the output is a probability between zero and one.	$MXE = -\frac{1}{N} \sum_{n \in \mathbb{N}} True \times ln(Predicted) + (1 - True) \\ \times ln(1 - Predicted)$ (The assumptions are that Predicted $\in [0, 1]$ and True $\in \{0, 1\}$)	• Minimizing MXE gives the maximum likelihood [102].
31	Probability Calibration (CAL)	-	 Order cases 1-100 by their predicted in the same bin. Evaluate the percentage of true positives. Calculate the mean prediction for true positives. Calculate the mean prediction calibration error for this bin (using the absolute value of the difference between the observed frequency and the mean). Repeat steps 1-4 for cases 2-101, 3-102, etc. CAL is calculated as the mean of these binned calibration errors [102]. 	• Lengthy procedure.
32	Precision-recall break-even point	Point at which the precision-recall- curve intersects the bisecting line.	Precision = Recall	• Defines the point when precision and recall are equal.
33	Average precision (AP)	Combines recall and precision for ranking.	$AP = \sum_{n} (Recall_{n} - Recall_{n-1})Percision_{n}$	• Describes the weighted mean of precision in each threshold with the increase in recall from the previous threshold used.
34	Balanced accuracy [115]	average of the correctly identified proportion of individual classes.	Defined as the average of recall obtained on each class.	 Used in binary and multiclass classification problems. Accommodates imbalanced datasets.
35	Brier score (BS)	Measures the accuracy of probabilistic- based predictions.	$BS = \frac{1}{N} \sum_{i=1}^{N} (f_i - A_i)^2$ in which f_i is the probability that was forecast, A_i the actual outcome of the event at instance i	 Measures the mean squared difference between the predicted probability and the actual outcome. Takes on a value between zero and 1 (the lower the score is, the better the predictions). Composed of refinement loss and calibration loss. Appropriate for binary and categorical outcomes. Inappropriate for ordinal variables.
36	Cohen's kappa (CK) [116]	Measures interrater (agreement) reliability.	$\kappa = (p_o - p_e)/(1 - p_e)$ where, p_o : empirical probability of agreement on the label assigned to any sample, p_e : expected agreement when both annotators assign labels randomly and this is estimated using a per-annotator empirical prior over the class labels.	 Measures inter-annotator agreement. Expresses the level of agreement between two annotators [117]. Ranges between -1 and 1. The maximum value means complete agreement.
37	Hamming loss (HL)	Fraction of the wrongly identified labels.	$HL = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{P_{i \neq A_{i}}}$	 Describes fraction of labels that are incorrectly predicted. Optimal value is zero [118].
38	Fitness (T) [119]	-	$Fitness(T) = Q(T) + \alpha * R(T) + \beta * Cost(T)$ where, $Q(T)$: accuracy, $R(T)$: sum of $R(T_i)$ in all multi-tests of the T tree, Cost(T): sum of the costs of attributes constituting multi- tests. The default parameters values are: $\alpha = 1.0$ and $\beta = -0.5$, $R(T_i) = \frac{ X_i }{ X } * \sum_{j=1}^{ mt_i -1} r_{ij}$ where, X: learning set, X_i : instances in i-th node, and $ mt_i $: size of a multi-test. $Cost(T_i) = \frac{ X }{ X_i } * C(a_{ij})$ where: a_{ij} : j-th attribute of the i-th multi-test, $C(a_{ij})$: cost of the a_{ij} attribute.	 Used for fitting decision trees. This function needs to be maximized to achieve high performance.
39	F2 score [120]	Measured as the weighted average	$F_{\beta} = 1 + \beta 2 \times \frac{precision \times recall}{(\beta 2 \times precision) + recall}$ where: $\beta = 2$.	 Used in genetic programming and medical fields. Computes a weighted harmonic mean of Precision and Recall.

¹²

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

		of precision and recall.		• Learning about the minority class.
40	Distance score (D score) [120]	-	$D_{sc} = \frac{2 \times C1 \times C2}{C1 + C2}$ where: $C1 = \frac{\sum_{i=0}^{N_{maj}} sig(P_{Maji}) \times T - sig(P_{Maji}) }{N_{maj}} \times func(1, P_{Maji})$ $sig(x) = \frac{2}{1 + e - x} - 1$ $C2 = \frac{\sum_{i=0}^{N_{min}} sig(P_{Mini}) \times T - sig(P_{Mini}) }{1, \text{if}k \le 0 \text{formajorityclassinstance}} \times func(1, P_{Mini})$ $1, \text{if}k \ge 0 \text{forminorityclassinstance}$ $func(1, k) = \{1, \text{if}k > 0 \text{forminorityclassinstance}$ $0, \text{otherwise}$ $C1 \text{ for majority class and } C2 \text{ for minority class.}$	 Used in genetic programming and medical fields. Distance score (D score) which learns about both the classes by giving them equal importance and being unbiased. The range of both C1 and C2 is 0 (worst score) to 1 (best score).

^{*}The reader is encouraged to review the cited references for full details on specific metrics.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

200 **3. Closing Remarks**

Our confidence in the accuracy of predictions obtained from ML algorithms heavily relies on the availability of actual observations and proper PFEMs. From this point of view, it is unfortunate that observations relating to the engineering discipline continue to be 1) limited in size, and 2) lack completeness. The lack of such observations is often related to limitations in conducting full-scale tests, the need for specialized equipment, and a wide variety of tested samples. For instance, one can think of how normal strength concrete mixes can significantly vary from one study to another

simply due to variation in raw materials, mix proportions, and casting/curing procedures, etc.

208

209 Combining the above two points with the notion of simply "applying ML" to understand a given 210 phenomenon (say flexural strength of beams) without a thorough validation is deemed to fail. In 211 fact, in many instances, researchers noted the validity of a specific ML model by reporting its 212 performance against traditional PFEMs, only to be later identified that such a model does not 213 properly represent actual observations – despite having good fitness. This can be avoided by 214 adopting a rigorous validation procedure [121, 122]. Unfortunately, many of the published studies 215 in the area of ML application in engineering do not include multi-criteria/additional validation 216 phases and simply rely on conventional performance metrics such as R or R^2 of the derived models. 217 Furthermore, adopting a set of PFEMs does not negate the occurrence of some common issues. 218 most notably, overfitting, biasedness etc. As such, an analysis that utilizes ML should also consider 219 some of the following techniques e.g. use of independent test datasets, varying degrees of cross-220 validation etc.

221

222 In order to ensure fruitful use of ML, it is our duty to seek proper application of ML. Besides, one 223 of the major concerns about the ML-based models is their robustness under a wide range of 224 conditions [123]. A robust ML model should not only provide reasonable PFEMs but should also 225 be capable of capturing the underlying physical mechanisms that govern the investigated system [124]. An essential approach to verify the robustness of the ML models is to perform parametric 226 227 and sensitivity analyses [123, 125]. These types of analyses ensure that the ML predictions are in 228 sound agreement with the system's real behavior and physical processes rather than being merely 229 a combination of the variables with the best fit on the data. Another item to consider is to develop 230 a user-friendly phenomenon-specific recommendation system wherein novice users who apply 231 pre-identified PFEMs are selected to evaluate the performance of a given problem (say using R^2 232 in a regression problem etc.).

233

The reader is to remember that the addition of one example to showcase recommended or important PFEMs negates the purpose of this paper (which is to compile commonly used performance metrics and list their key characteristics into one document to provide interested researchers in carrying out a ML analysis with a starting point to select proper performance metrics). Providing a comparison for all of the reviewed metrics will significantly extend this work beyond its scope and may not be feasible at the moment. We feel that this is best suited for a series of more in-depth reviews wherein metrics for classification and regression problems can be

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

- separately evaluated and reviewed under well-designed problems and a variety of conditions to ensure fairness and unbiasedness to come in the near future.
- 243

256

It is our intention to not specifically identify a measure (or a set of measures) due to the wide range of problems (as well as the quality of data) that a scientist could face. Please note that other researchers (which are quoted herein) also followed a similar approach.

- ° "Although some methods clearly perform better or worse than other methods on average,
 there is significant variability across the problems and metrics. Even the best models
 sometimes perform poorly, and models with poor average performance occasionally perform
 exceptionally well." [126].
- °"It is clearly difficult to convincingly differentiate ML algorithms (and feature reduction techniques) on the basis of their achievable accuracy, recall and precision."[127].
- 253 o "Different performance metrics yield different tradeoffs that are appropriate in different
 254 settings. No one metric does it all, and the metric optimized to or used for model selection
 255 does matter."[102].

4. Conclusions

258 Based on the information presented in this note, the following conclusions can be drawn.

- ML is expected to rise into a key analysis tool in the coming few years; especially within material scientists and structural engineers. As such, the integration of ML is to be thorough and proper. Hence, the need for proper validation procedure.
- A variety of performance metrics and error metrics exists for regression and classification problems. This work recommends the utilization of multi-fitness criteria (where a series of metrics are checked on one problem) to ensure the validity of ML models as these metrics may overcome some of the limitations of induvial metrics. Such metrics can be of independent nature to each other such as, R², RSME, and *a*20-index.
- The performance of the existing metrics and future fitness functions can be further improved through systematic collaboration between researchers of interdisciplinary backgrounds. For example, efforts are invited to identify and recommend metrics suitable for specific problems and datasets.
- Future works should be directed towards documenting and exploring performance 273 metrics for other types of learnings such as unsupervised learning and reinforcement 274 learning. This is ongoing research need that is to be addressed in the coming years.
- 275276 Data Availability
- 277 No data, models, or code were generated or used during the study.
- 278279 *Declarations of interest*: none.
- 280

2815. References

282 1. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: A literature review.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

283		Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2017.09.010
284	2.	Botchkarev A (2019) A new typology design of performance metrics to measure errors in
285		machine learning regression algorithms. Interdiscip J Information, Knowledge, Manag
286		14:045–076. https://doi.org/10.28945/4184
287	3.	Bishop C (2007) Pattern Recognition and Machine Learning. Technometrics.
288		https://doi.org/10.1198/tech.2007.s518
289	4.	Fu G-S, Levin-Schwartz Y, Lin Q-H, Zhang D (2019) Machine Learning for Medical
290		Imaging, J Healthc Eng. https://doi.org/10.1155/2019/9874591
291	5.	Michalski, R. S., Carbonell, J. G., & Mitchell TM (1983) Machine learning: An artificial
292	-	intelligence approach.
293	6.	Maijdifard H. Jahangiri B. Buttlar WG. Alavi AH (2019) New machine learning-based
294		prediction models for fracture energy of asphalt mixtures. Meas J Int Meas Confed.
295		https://doi.org/10.1016/i.measurement.2018.11.081
296	7.	Hu X. Li SE, Yang Y (2016) Advanced Machine Learning Approach for Lithium-Ion
297		Battery State Estimation in Electric Vehicles. IEEE Trans Transp Electrif.
298		https://doi.org/10.1109/TTE.2015.2512237
299	8.	Vovant C. Notton G. Kalogirou S. et al (2017) Machine learning methods for solar
300	-	radiation forecasting: A review. Renew. Energy
301	9.	Shukla R. Singh D (2017) Experimentation investigation of abrasive water iet machining
302		parameters using Taguchi and Evolutionary optimization techniques. Swarm Evol
303		Comput. https://doi.org/10.1016/i.swevo.2016.07.002
304	10.	Hindman M (2015) Building Better Models: Prediction, Replication, and Machine
305		Learning in the Social Sciences. Ann Am Acad Pol Soc Sci.
306		https://doi.org/10.1177/0002716215570279
307	11.	Grimmer J (2014) We are all social scientists now: How big data, machine learning, and
308		causal inference work together. In: PS - Political Science and Politics
309	12.	Naser M, Chehab A (2018) Materials and design concepts for space-resilient structures.
310		Prog Aerosp Sci 98:74–90. https://doi.org/10.1016/j.paerosci.2018.03.004
311	13.	Rashno A, Nazari B, Sadri S, Saraee M (2017) Effective pixel classification of Mars
312		images based on ant colony optimization feature selection and extreme learning machine.
313		Neurocomputing. https://doi.org/10.1016/j.neucom.2016.11.030
314	14.	Jordan MI, Mitchell TM (2015) Machine learning: Trends, perspectives, and prospects.
315		Science 349:255-60. https://doi.org/10.1126/science.aaa8415
316	15.	Seitllari A (2014) Traffic Flow Simulation by Neuro-Fuzzy Approach. In: Second
317		International Conference on Traffic. Belgrade, pp 97–102
318	16.	Naser MZ (2019) AI-based cognitive framework for evaluating response of concrete
319		structures in extreme conditions. Eng Appl Artif Intell 81:437–449.
320		https://doi.org/10.1016/J.ENGAPPAI.2019.03.004
321	17.	Li X, Qiao T, Pang Y, et al (2018) A new machine vision real-time detection system for
322		liquid impurities based on dynamic morphological characteristic analysis and machine
323		learning. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2018.04.015
324	18.	Oleaga I, Pardo C, Zulaika JJ, Bustillo A (2018) A machine-learning based solution for

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

325 chatter prediction in heavy-duty milling machines. Meas J Int Meas Confed. 326 https://doi.org/10.1016/j.measurement.2018.06.028 327 Shanmugamani R, Sadique M, Ramamoorthy B (2015) Detection and classification of 19. 328 surface defects of gun barrels using computer vision and machine learning. Meas J Int 329 Meas Confed. https://doi.org/10.1016/j.measurement.2014.10.009 330 20. Naser MZ (2019) Properties and material models for common construction materials at 331 elevated temperatures. Constr Build Mater 10:192-206. 332 https://doi.org/10.1016/j.conbuildmat.2019.04.182 333 21. Raccuglia P, Elbert KC, Adler PDF, et al (2016) Machine-learning-assisted materials 334 discovery using failed experiments. Nature. https://doi.org/10.1038/nature17439 335 22. Alavi AH, Hasni H, Lajnef N, et al (2016) Damage detection using self-powered wireless 336 sensor data: An evolutionary approach. Meas J Int Meas Confed. 337 https://doi.org/10.1016/j.measurement.2015.12.020 338 23. Farrar CR. Worden K (2012) Structural Health Monitoring: A Machine Learning 339 Perspective 340 24. Mcfarlane C (2011) The city as a machine for learning. Trans Inst Br Geogr. 341 https://doi.org/10.1111/j.1475-5661.2011.00430.x 342 25. Chan J, Chan K, Yeh A (2001) Detecting the nature of change in an urban environment: A 343 comparison of machine learning algorithms. Photogramm. Eng. Remote Sensing 344 King DE (2009) Dlibml: A Machine Learning Toolkit. J Mach Learn Res 26. 345 27. Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A Matlab-like Environment for 346 Machine Learning 347 28. Hall M, Frank E, Holmes G, et al (2009) The WEKA data mining software. ACM 348 SIGKDD Explor Newsl. https://doi.org/10.1145/1656274.1656278 349 Ramsundar B (2016) TensorFlow Tutorial. CS224d 29. 350 Zaharia M, Franklin MJ, Ghodsi A, et al (2016) Apache Spark. Commun ACM. 30. 351 https://doi.org/10.1145/2934664 352 31. Korolov M (2018) AI's biggest risk factor: Data gone wrong | CIO. In: CIO. 353 https://www.cio.com/article/3254693/ais-biggest-risk-factor-data-gone-wrong.html. 354 Accessed 5 Jul 2019 355 32. Kodur VKR, Garlock M, Iwankiw N (2012) Structures in Fire: State-of-the-Art, Research 356 and Training Needs. Fire Technol 48:825-39. https://doi.org/10.1007/s10694-011-0247-4 357 33. Naser MZ (2019) Fire Resistance Evaluation through Artificial Intelligence - A Case for 358 Timber Structures. Fire Saf J 105:1–18. 359 https://doi.org/https://doi.org/10.1016/j.firesaf.2019.02.002 360 34. Domingos P (2012) A few useful things to know about machine learning. Commun ACM. 361 https://doi.org/10.1145/2347736.2347755 Shakya AM, Kodur VKR (2015) Response of precast prestressed concrete hollowcore 362 35. 363 slabs under fire conditions. Eng Struct. https://doi.org/10.1016/j.engstruct.2015.01.018 364 Kodur VKR, Bhatt PP (2018) A numerical approach for modeling response of fiber 36. 365 reinforced polymer strengthened concrete slabs exposed to fire. Compos Struct 187:226-366 240. https://doi.org/10.1016/J.COMPSTRUCT.2017.12.051

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

367 37. Kohnke PC (2013) ANSYS. In: © ANSYS, Inc. 368 38. Abaqus 6.13 (2013) Abaqus 6.13. Anal User's Guid Dassault Syst 369 Franssen JM, Gernay T (2017) Modeling structures in fire with SAFIR®: Theoretical 39. 370 background and capabilities. J Struct Fire Eng. https://doi.org/10.1108/JSFE-07-2016-371 0010 372 40. Golafshani EM, Behnood A (2018) Automatic regression methods for formulation of 373 elastic modulus of recycled aggregate concrete. Appl Soft Comput J. 374 https://doi.org/10.1016/j.asoc.2017.12.030 375 41. Sadowski Ł, Nikoo M, Nikoo M (2018) Concrete compressive strength prediction using 376 the imperialist competitive algorithm. Comput Concr. 377 https://doi.org/10.12989/cac.2018.22.4.355 378 42. Alavi AH, Gandomi AH, Sahab MG, Gandomi M (2010) Multi expression programming: 379 A new approach to formulation of soil classification. Eng Comput 26:111–118. 380 https://doi.org/10.1007/s00366-009-0140-7 381 43. Mirjalili S, Lewis A (2015) Novel performance metrics for robust multi-objective 382 optimization algorithms. Swarm Evol Comput. 383 https://doi.org/10.1016/j.swevo.2014.10.005 384 44. Mishra SK, Panda G, Majhi R (2014) A comparative performance assessment of a set of 385 multiobjective algorithms for constrained portfolio assets selection. Swarm Evol Comput. 386 https://doi.org/10.1016/j.swevo.2014.01.001 387 45. Schmidt MD, Lipson H (2010) Age-fitness pareto optimization 388 Cremonesi P, Koren Y, Turrin R (2010) Performance of Recommender Algorithms on 46. 389 Top-N Recommendation Tasks Categories and Subject Descriptors. RecSys 390 47. Laszczyk M, Myszkowski PB (2019) Survey of quality measures for multi-objective 391 optimization: Construction of complementary set of multi-objective quality measures. 392 Swarm Evol Comput 48:109-133. https://doi.org/10.1016/J.SWEVO.2019.04.001 393 48. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the 394 root mean square error (RMSE) in assessing average model performance. Clim Res. https://doi.org/10.3354/cr030079 395 396 49. Makridakis S (1993) Accuracy measures: theoretical and practical concerns. Int J Forecast. https://doi.org/10.1016/0169-2070(93)90079-3 397 398 50. Ferreira C (2001) Gene Expression Programming: a New Adaptive Algorithm for Solving 399 Problems. Ferreira, C (2001) Gene Expr Program a New Adapt Algorithm Solving Probl 400 Complex Syst 13 401 51. (2016) Handbook of Time Series Analysis, Signal Processing, and Dynamics 402 Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J 52. 403 Forecast. https://doi.org/10.1016/j.ijforecast.2006.03.001 404 Shcherbakov MV, Brebels A, Shcherbakova NL, et al (2013) A survey of forecast error 53. 405 measures. World Appl Sci J. https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032 406 54. Bain LJ (1967) Applied Regression Analysis. Technometrics. 407 https://doi.org/10.1080/00401706.1967.10490452 408 Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting 55.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

409 methods: Empirical comparisons. Int J Forecast. https://doi.org/10.1016/0169-410 2070(92)90008-W 411 56. Poli AA, Cirillo MC (1993) On the use of the normalized mean square error in evaluating 412 dispersion model performance. Atmos Environ Part A, Gen Top. 413 https://doi.org/10.1016/0960-1686(93)90410-Z 414 57. Smith G (1986) Probability and statistics in civil engineering. Collins, London 415 58. Golbraikh A, Shen M, Xiao Z, et al (2003) Rational selection of training and test sets for 416 the development of validated QSAR models. J Comput Aided Mol Des 17:241-253. 417 https://doi.org/10.1023/A:1025386326946 418 59. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares 419 regression models. QSAR Comb Sci 27:302-313. https://doi.org/10.1002/qsar.200710043 420 60. Frank I, Todeschini R (1994) The data analysis handbook 421 Gandomi AH, Yun GJ, Alavi AH (2013) An evolutionary approach for modeling of shear 61. 422 strength of RC deep beams. Mater Struct Constr. https://doi.org/10.1617/s11527-013-423 0039-z 424 Cheng MY, Firdausi PM, Prayogo D (2014) High-performance concrete compressive 62. 425 strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT). Eng Appl 426 Artif Intell. https://doi.org/10.1016/j.engappai.2013.11.014 427 Alwanas AAH, Al-Musawi AA, Salih SQ, et al (2019) Load-carrying capacity and mode 63. 428 failure simulation of beam-column joint connection: Application of self-tuning machine 429 learning model. Eng Struct. https://doi.org/10.1016/j.engstruct.2019.05.048 430 64. Chou JS, Tsai CF, Pham AD, Lu YH (2014) Machine learning in concrete strength 431 simulations: Multi-nation data analytics. Constr Build Mater. 432 https://doi.org/10.1016/j.conbuildmat.2014.09.054 433 Sadat Hosseini A, Hajikarimi P, Gandomi M, et al (2021) Genetic programming to 65. 434 formulate viscoelastic behavior of modified asphalt binder. Constr Build Mater. 435 https://doi.org/10.1016/j.conbuildmat.2021.122954 436 Nguyen TT, Pham Duy H, Pham Thanh T, Vu HH (2020) Compressive Strength 66. 437 Evaluation of Fiber-Reinforced High-Strength Self-Compacting Concrete with Artificial 438 Intelligence. Adv Civ Eng 2020:. https://doi.org/10.1155/2020/3012139 439 67. Sultana N, Zakir Hossain SM, Alam MS, et al (2020) Soft computing approaches for 440 comparative prediction of the mechanical properties of jute fiber reinforced concrete. Adv 441 Eng Softw 149:. https://doi.org/10.1016/j.advengsoft.2020.102887 442 68. Willmott CJ (1981) On the validation of models. Phys Geogr. 443 https://doi.org/10.1080/02723646.1981.10642213 444 69. Nash JE, Sutcliffe J V. (1970) River flow forecasting through conceptual models part I - A 445 discussion of principles. J Hydrol. https://doi.org/10.1016/0022-1694(70)90255-6 446 Gupta H V., Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean 70. 447 squared error and NSE performance criteria: Implications for improving hydrological 448 modelling. J Hydrol. https://doi.org/10.1016/j.jhydrol.2009.08.003 449 71. Knoben WJM, Freer JE, Woods RA (2019) Technical note: Inherent benchmark or not? 450 Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol Earth Syst Sci.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. <u>https://doi.org/10.1007/s44150-021-00015-8</u>

451 https://doi.org/10.5194/hess-23-4323-2019 452 72. Cheng MY, Chou JS, Roy AFV, Wu YW (2012) High-performance Concrete 453 Compressive Strength Prediction using Time-Weighted Evolutionary Fuzzy Support 454 Vector Machines Inference Model. Autom Constr. 455 https://doi.org/10.1016/j.autcon.2012.07.004 456 73. Yaseen ZM, Deo RC, Hilal A, et al (2018) Predicting compressive strength of lightweight 457 foamed concrete using extreme learning machine model. Adv Eng Softw. 458 https://doi.org/10.1016/j.advengsoft.2017.09.004 459 74. Yang L, Oi C, Lin X, et al (2019) Prediction of dynamic increase factor for steel fibre 460 reinforced concrete using a hybrid artificial intelligence model. Eng Struct. 461 https://doi.org/10.1016/j.engstruct.2019.03.105 Qi C, Fourie A, Chen Q (2018) Neural network and particle swarm optimization for 462 75. 463 predicting the unconfined compressive strength of cemented paste backfill. Constr Build 464 Mater. https://doi.org/10.1016/j.conbuildmat.2017.11.006 465 76. Chou J-S, Chiu C-K, Farfoura M, Al-Taharwa I (2010) Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining 466 467 Techniques. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0000088 468 77. Deepa C, SathiyaKumari K, Sudha VP (2010) Prediction of the Compressive Strength of 469 High Performance Concrete Mix using Tree Based Modeling. Int J Comput Appl. 470 https://doi.org/10.5120/1076-1406 471 78. Erdal HI (2013) Two-level and hybrid ensembles of decision trees for high performance 472 concrete compressive strength prediction. Eng Appl Artif Intell. 473 https://doi.org/10.1016/j.engappai.2013.03.014 474 79. Yan K, Shi C (2010) Prediction of elastic modulus of normal and high strength concrete 475 by support vector machine. Constr Build Mater. 476 https://doi.org/10.1016/j.conbuildmat.2010.01.006 477 80. Rafiei MH, Khushefati WH, Demirboga R, Adeli H (2017) Supervised Deep Restricted 478 Boltzmann Machine for Estimation of Concrete. ACI Mater J 114:. 479 https://doi.org/10.14359/51689560 480 81. Yan K, Xu H, Shen G, Liu P (2013) Prediction of Splitting Tensile Strength from Cylinder 481 Compressive Strength of Concrete by Support Vector Machine. Adv Mater Sci Eng. 482 https://doi.org/10.1155/2013/597257 483 82. Anoop Krishnan NM, Mangalathu S, Smedskjaer MM, et al (2018) Predicting the 484 dissolution kinetics of silicate glasses using machine learning. J Non Cryst Solids. 485 https://doi.org/10.1016/j.jnoncrysol.2018.02.023 Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the 486 83. 487 friction stir welding of aluminum plates. Mater Des. 488 https://doi.org/10.1016/j.matdes.2005.06.003 489 Lim CH, Yoon YS, Kim JH (2004) Genetic algorithm in mix proportioning of high-84. 490 performance concrete. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2003.08.018 491 85. Haghdadi N, Zarei-Hanzaki A, Khalesian AR, Abedi HR (2013) Artificial neural network 492 modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

493		https://doi.org/10.1016/j.matdes.2012.12.082
494	86.	Golafshani EM, Behnood A (2019) Estimating the optimal mix design of silica fume
495		concrete using biogeography-based programming. Cem Concr Compos 96:95-105.
496		https://doi.org/10.1016/J.CEMCONCOMP.2018.11.005
497	87.	Naser MZ (2018) Deriving temperature-dependent material models for structural steel
498		through artificial intelligence. Constr Build Mater 191:56–68.
499		https://doi.org/10.1016/J.CONBUILDMAT.2018.09.186
500	88.	Naser MZ (2019) Properties and material models for modern construction materials at
501		elevated temperatures. Comput Mater Sci 160:16–29.
502		https://doi.org/10.1016/J.COMMATSCI.2018.12.055
503	89.	Mousavi SM, Aminian P, Gandomi AH, et al (2012) A new predictive model for
504		compressive strength of HPC using gene expression programming. Adv Eng Softw.
505		https://doi.org/10.1016/j.advengsoft.2011.09.014
506	90.	Gandomi AH, Alavi AH, Sahab MG (2010) New formulation for compressive strength of
507		CFRP confined concrete cylinders using linear genetic programming. Mater Struct Constr.
508		https://doi.org/10.1617/s11527-009-9559-y
509	91.	Mollahasani A, Alavi AH, Gandomi AH (2011) Empirical modeling of plate load test
510		moduli of soil via gene expression programming. Comput Geotech.
511		https://doi.org/10.1016/j.compgeo.2010.11.008
512	92.	Erdal HI, Karakurt O, Namli E (2013) High performance concrete compressive strength
513		forecasting using ensemble models based on discrete wavelet transform. Eng Appl Artif
514		Intell. https://doi.org/10.1016/j.engappai.2012.10.014
515	93.	Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? In: Proceedings of the ACL-02
516		conference on Empirical methods in natural language processing - EMNLP '02
517	94.	Galdi P, Tagliaferri R (2017) Data Mining: Accuracy and Error Measures for
518		Classification and Prediction. In: Encyclopedia of Bioinformatics and Computational
519		Biology
520	95.	Valença J, Gonçalves LMS, Júlio E (2013) Damage assessment on concrete surfaces using
521		multi-spectral image analysis. Constr Build Mater.
522		https://doi.org/10.1016/j.conbuildmat.2012.11.061
523	96.	Huang H, Burton H V. (2019) Classification of in-plane failure modes for reinforced
524		concrete frames with infills using machine learning. J Build Eng.
525		https://doi.org/10.1016/j.jobe.2019.100767
526	97.	Azimi SM, Britz D, Engstler M, et al (2018) Advanced steel microstructural classification
527		by deep learning methods. Sci Rep. https://doi.org/10.1038/s41598-018-20037-5
528	98.	Hore S, Chatterjee S, Sarkar S, et al (2016) Neural-based prediction of structural failure of
529		multistoried RC buildings. Struct Eng Mech. https://doi.org/10.12989/sem.2016.58.3.459
530	99.	Bhowan U, Johnston M, Zhang M (2012) Developing new fitness functions in genetic
531		programming for classification with unbalanced data. IEEE Trans Syst Man, Cybern Part
532		B Cybern. https://doi.org/10.1109/TSMCB.2011.2167144
533	100.	Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using
534		Matthews Correlation Coefficient metric. PLoS One.

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

535		https://doi.org/10.1371/journal.pone.0177678
536	101.	Tharwat A (2018) Classification assessment methods. Appl. Comput. Informatics
537	102.	Caruana R, Niculescu-Mizil A (2004) Data mining in metric space: an empirical analysis
538		of supervised learning performance criteria. In: KDD-2004 - Proceedings of the Tenth
539		ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
540	103.	Jurman G, Riccadonna S, Furlanello C (2012) A comparison of MCC and CEN error
541		measures in multi-class prediction. PLoS One.
542		https://doi.org/10.1371/journal.pone.0041882
543	104.	Powers DMW (2011) Evaluation: From Precision, Recall and F-Factor to ROC,
544		Informedness, Markedness & Correlation. J Mach Learn Technol.
545		https://doi.org/10.1.1.214.9232
546	105.	Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine
547		learning algorithms. Pattern Recognit. https://doi.org/10.1016/S0031-3203(96)00142-2
548	106.	Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating
549		characteristic (ROC) curve. Radiology. https://doi.org/10.1148/radiology.143.1.7063747
550	107.	Zhang Y, Burton H V., Sun H, Shokrabadi M (2018) A machine learning framework for
551		assessing post-earthquake structural safety. Struct Saf.
552		https://doi.org/10.1016/j.strusafe.2017.12.001
553	108.	Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC curves.
554		In: Proceedings of the 23rd international conference on Machine learning - ICML '06
555	109.	Bi, J.; Bennett KPP (2003) Regression Error Characteristic Curves. Proc Twent Int Conf
556		Mach Learn
557	110.	Zhang M, Smart W (2006) Using Gaussian distribution to construct fitness functions in
558		genetic programming for multiclass object classification. Pattern Recognit Lett.
559		https://doi.org/10.1016/j.patrec.2005.07.024
560	111.	Kocher M, Savoy J (2017) Distance measures in author profiling. Inf Process Manag.
561		https://doi.org/10.1016/j.ipm.2017.04.004
562	112.	Patel B V (2012) Content Based Video Retrieval Systems. Int J UbiComp.
563		https://doi.org/10.5121/iju.2012.3202
564	113.	Giusti R, Batista GEAPA (2013) An empirical comparison of dissimilarity measures for
565		time series classification. In: Proceedings - 2013 Brazilian Conference on Intelligent
566		Systems, BRACIS 2013
567	114.	Vuk M, Curk T (2006) ROC Curve , Lift Chart and Calibration Plot. Metod Zv
568	115.	Brodersen KH, Ong CS, Stephan KE, Buhmann JM (2010) The balanced accuracy and its
569		posterior distribution. In: Proceedings - International Conference on Pattern Recognition
570	116.	Cohen J (1960) A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas.
571		https://doi.org/10.1177/001316446002000104
572	117.	Artstein R, Poesio M (2008) Inter-coder agreement for computational linguistics. Comput.
573		Linguist.
574	118.	Destercke S (2014) Multilabel Prediction with Probability Sets: The Hamming Loss Case.
575		In: Communications in Computer and Information Science
576	110	Crailrowski M. Knotowski M (2010) Desision Tree Underfitting in Mining of Cana

576 119. Czajkowski M, Kretowski M (2019) Decision Tree Underfitting in Mining of Gene

Please cite this paper as:

Naser M.Z., Alavi, A. (2021). "Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences." *Architecture, Structures and Construction*. https://doi.org/10.1007/s44150-021-00015-8

- 577 Expression Data. An Evolutionary Multi-Test Tree Approach. Expert Syst Appl.
 578 https://doi.org/10.1016/J.ESWA.2019.07.019
- 579 120. Devarriya D, Gulati C, Mansharamani V, et al (2019) Unbalanced Breast Cancer Data
 580 Classification Using Novel Fitness Functions in Genetic Programming. Expert Syst Appl
 581 112866. https://doi.org/10.1016/J.ESWA.2019.112866
- 582 121. Bhaskar H, Hoyle DC, Singh S (2006) Machine learning in bioinformatics: A brief survey
 583 and recommendations for practitioners. Comput Biol Med.
 584 https://doi.org/10.1016/j.compbiomed.2005.09.002
- 585 122. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and
 586 model selection. Proc 14th Int Jt Conf Artif Intell Vol 2
- 587 123. Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a
 588 hybrid method coupling artificial neural networks and simulated annealing. Comput
 589 Struct. https://doi.org/10.1016/j.compstruc.2011.08.019
- 590 124. Kingston GB, Maier HR, Lambert MF (2005) Calibration and validation of neural networks to ensure physically plausible hydrological modeling. J Hydrol.
 592 https://doi.org/10.1016/j.jhydrol.2005.03.013
- 593 125. Kuo YL, Jaksa MB, Lyamin A V., Kaggwa WS (2009) ANN-based model for predicting
 594 the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech.
 595 https://doi.org/10.1016/j.compgeo.2008.07.002
- 596 126. Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning
 597 algorithms. In: ACM International Conference Proceeding Series. ACM Press, New York,
 598 USA, pp 161–168
- Williams N, Zander S, Armitage G (2006) A preliminary performance comparison of five
 machine learning algorithms for practical IP traffic flow classification. Comput Commun
 Rev. https://doi.org/10.1145/1163593.1163596
- 602