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ABSTRACT 11 

This paper presents the development of systematic machine learning (ML) approach to enable 12 

explainable and rapid assessment of fire resistance and fire-induced spalling of reinforced concrete 13 

(RC) columns. The developed approach comprises an ensemble of three novel ML algorithms 14 

namely; random forest (RF), extreme gradient boosted trees (ExGBT), and deep learning (DL). 15 

These algorithms are trained to account for a wide collection of geometric characteristics and 16 

material properties, as well as loading conditions to examine fire performance of normal and high 17 

strength RC columns by analyzing a comprehensive database of fire tests comprising of over 494 18 

observations. The developed ensemble is also capable of presenting quantifiable insights to ML 19 

predictions; thus, breaking free from the notion of “black-box” ML and establishing a solid step 20 

towards transparent and explainable ML. Most importantly, this work tackles the scarcity of 21 

available fire tests by proposing new techniques to leverage the use of real, synthetic, and 22 

augmented fire test observations. The developed ML ensemble has been calibrated and validated 23 

for standard and design fire exposures and one-, two-, three- and four-sided fire exposures thus; 24 

covering a wide range of practical scenarios present during fire incidents. When fully deployed, 25 

the developed ensemble can analyze over 5,000 RC columns in under 60 seconds; thus, providing 26 

an attractive solution for researchers and practitioners. The presented approach can also be easily 27 

extended for evaluating fire resistance and spalling of other structural members under varying fire 28 

scenarios and loading conditions and hence paves the way to modernize the state of this research 29 

area and practice.  30 

 31 

Keywords: Spalling; Fire resistance; Machine learning; Explainability, Concrete; Columns. 32 

1.0 INTRODUCTION 33 

Exposure to elevated temperatures, as encountered in fire, adversely affects the properties of 34 

construction materials. In the case of concrete, fire-induced changes arising from physio-chemical 35 

reactions often lead to degradations in physical and microstructural mechanical properties and may 36 

trigger spalling. Spalling is defined as the explosive break up of chunks of concrete from the 37 

structural member during a fire. As such, spalling not only reduces the available overall cross-38 

sectional area in a reinforced concrete (RC) member but also exposes steel reinforcement and 39 

internal concrete layers to fire, thus accelerating the rate of strength and elastic modulus 40 

deterioration throughout a structural member [1]. This loss in strength and elastic modulus 41 

properties, combined with loss of cross section, diminishes the fire resistance of RC structural 42 
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members. These hostile effects can adversely impact the performance of fire exposed concrete 43 

columns.   44 

The fire resistance of a structural member is influenced by a number of factors, including fire 45 

scenarios, geometry, and boundary conditions, and these factors change with fire exposure. Thus, 46 

fire resistance valuation involves a complex set of calculations and requires insights into varying 47 

material and structural behavior under the combined effects of high temperatures and mechanical 48 

loading. Due to the costly, lengthy and specialized nature of fire testing, researchers and engineers 49 

heavily rely on hand-based analytical or empirical methods or cumbersome finite element (FE) 50 

based numerical simulations and digital twinning, with various degrees of idealization, to design 51 

structural members to withstand fire effects [2,3]. While the aforenoted methods are regarded as 52 

exemplary procedures, it must be noted that the validity of such methods stems from prior 53 

calibration against actual fire tests. However, the serious absence of standardized validation 54 

procedure (in terms of proper selection of simulation environment, assignment of inputs etc.) adds 55 

layers of challenges that continue to hinder the use, as well as acceptance, of traditional calculation 56 

methods. In fact, a look into the open literature published over the past two decades shows that 57 

advancements in developing robust calculation methods for structural fire engineering applications 58 

continue to be minute as opposed to those observed in parallel fields (i.e. earthquake engineering 59 

[4,5]).  60 

 61 

To accelerate research efforts and support the current inertia aimed at facilitating performance-62 

based design, fire researchers and engineers are to fully leverage ongoing advancements in 63 

computing and data analytics. Of interest to this research area is methods that are capable of 64 

comprehending the fire behavior of materials and structural systems to enable a rapid and robust 65 

assessment of the performance of structural members under fire conditions. Such methods are 66 

preferred to be easy to use and deploy (i.e. do not require specialized/commercial software or 67 

workstations) since structural engineers are not often familiar with fire design aspects. Further, 68 

such methods are required to be well validated, and also need to be universally accepted and 69 

unified to facilitate wide and prompt acceptance [6–9].  70 

 71 

Given the multi-dimensionality of most fire engineering related phenomena, arriving at such 72 

methods was not truly possible until the recent advances of machine learning (ML) techniques. 73 

This technology capitalizes on the notion that machines can be trained to learn how humans (i.e. 74 

structural fire engineers) think and practice to identify patterns and solutions to complex 75 

phenomena (e.g. spalling). In a way, these envisioned tools are “expert systems” that complement 76 

human engineers' and researchers’ expertise [10,11].  77 

 78 

The use of ML has been rapidly evolving over the past few years but has been slowly implemented 79 

into structural and fire engineering applications. For example, Golafshani and Behnood [12] 80 

applied a combination of ML algorithms to predict the compressive strength of various concretes 81 

with success. Similarly, Chan et al. [13] proposed and trained a basic artificial neural network 82 

(ANN) by analyzing small scale material property tests to arrive at a surrogate model to predict 83 

temperature-induced degradation in compressive strength of concrete. Erdem [14] also developed 84 

a simple ANN to estimate the flexural capacity of RC slabs under fire conditions by accounting 85 
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for material characteristics (e.g. compressive strength of concrete, yield strength of reinforcement) 86 

and geometric features (i.e. depth, span) etc. In a notable work, McKinney and Ali [15] developed 87 

a general purpose ANN to qualitatively classify spalling in concrete cylinders. It is worth noting 88 

that the use of other ML algorithms, such as genetic programming, to tackle fire-related problems 89 

is also reported in the literature [16–18]. 90 

 91 

A common feature of many of the above discussed works is the implied notion of additional 92 

validation to showcase that ML can be used to predict a phenomenon that happens to be related to 93 

fire engineering. While ML algorithms have been rigorously vetted by computer and data 94 

scientists, whether during stages of development or deployment, validating the potential of using 95 

ML in the field of fire engineering still has its merit but does not fully harness the full potential of 96 

ML. Another common notion to consider is that most of the reviewed works seem to apply ML 97 

techniques in a “black-box” approach. In this approach, a ML algorithm is but a tool that generates 98 

a surrogate model with highly complex and unclear configuration to link inputs-to-output(s). Such 99 

surrogate models cannot be simplified to understand its inner workings, nor how/why such a model 100 

yields a certain prediction of response parameters [19,20]. 101 

 102 

Unlike traditional works, this paper explores the use of explainable ML (XML) to enable 103 

developing new and improved ML tools that are transparent and can truly provide valuable insights 104 

to fire researchers and engineers. This work also tackles the limited availability of fire test data by 105 

proposing the use of a combination of real, synthetic, and augmented observations. For this, a ML 106 

ensemble has been calibrated and validated to predict fire resistance and spalling of RC columns 107 

subjected to either standard or design fire scenarios from one-, two-, three- and four-sides thus; 108 

covering a wide range of practical situations that may occur in real life fire incidents. The proposed 109 

approach can also be easily extended to other structural members and fire scenarios and hence 110 

paves the way to smoothly integrate XML into wide ranging structural fire engineering problems.  111 

 112 

2.0 FACTORS GOVERNING FIRE RESISTANCE AND FIRE-INDUCED SPALLING  113 

For the most part, RC columns made of traditional concrete (i.e. normal strength concrete (NSC)) 114 

exhibit excellent performance under fire conditions provided that such columns have adequate size 115 

and concrete cover [21]. Nowadays, high strength concrete (HSC) and ultra-high performance 116 

concrete (UHPC) are much prominent and attractive due to their superior mechanical and 117 

durability properties at ambient conditions. However, the same concretes are shown to exhibit poor 118 

performance under fire conditions [22,23]. Numerous studies have noted that HSC and UHPC not 119 

only undergo faster degradation in strength and elastic modulus properties due to elevated 120 

temperatures but are shown to be more susceptible to fire-induced spalling than NSC [24]. More 121 

specifically, spalling is said to have occurred in a column when significant portion of cover 122 

concrete is lost due to temperature induced stresses developed under fire exposure. Fire resistance 123 

(or time to failure) is the time at which the capacity of an RC column falls below the load the 124 

column has to sustain during fire exposure.  125 

 126 

This relatively high susceptibility to spalling is driven by the complex microstructural changes, 127 

low permeability, and extensive use of fillers/admixtures in HSC and UHPC [1,25]. These factors 128 
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result in build-up of high level of vapor pressure during fire exposure – the main cause of spalling. 129 

Due to the dense microstructure of HSC and UHPC, vapor pressure build-up can reach a high 130 

degree of saturation which translates into large internal pressure or tensile stresses (estimated at 5-131 

8 MPa). Such internal pressure is often too high to be resisted by the rapidly degrading tensile 132 

strength of HSC and UHPC (about 5-7 MPa) [26]. All being equal, HSC and UHPC become brittle 133 

at elevated temperatures, and the strain attained at any stress level is often much lower than that 134 

attained in NSC for any given temperature, which explains the favorable performance of NSC 135 

under fire [27].  136 

 137 

It is worth noting that observations from fire tests as well as real fire incidents, have identified a 138 

series of key factors that govern fire performance and spalling susceptibility of concrete [28–31]. 139 

A brief summary of these factors is provided herein, and a more comprehensive review can be 140 

found elsewhere [30,32–34].  141 

2.1 Concrete mixture design and properties  142 

The components used in concrete mixture govern the ambient and elevated temperature properties 143 

of concrete. The mechanical properties of concrete are much more affected by the rise in 144 

temperature (and temperature-induced changes) as opposed to thermal properties, and hence the 145 

former is of interest to this discussion. Some of the key factors that affect fire performance of 146 

concrete include: aggregate type, silica fume, density, fiber content, compressive strength, 147 

moisture content, etc. [27,35,36].  148 

 149 

There are three main types of aggregates commonly used in batch mixture design; carbonate, 150 

silicate, and light weight aggregate. Of these types, carbonate aggregates are noted to provide 151 

better fire resistance than that of silicate and light weight aggregates. This can be attributed to the 152 

fact that carbonate aggregates undergo an endothermic reaction at 700°C due to dissociation of the 153 

dolomite. This reaction acts as a heatsink and lowers the rate of temperature rise, and slows down 154 

strength deterioration in carbonate concrete [23]. On a similar note, fire tests carried out by Bildeau 155 

et al. [37] showed that the extent of spalling was found to be greater when lightweight aggregate 156 

is used, possibly due to higher moisture content contained by lightweight aggregate, which creates 157 

higher vapor pressure under fire. Overall, high moisture content has been shown to increase 158 

concrete’ vulnerability to spalling [38]. It should be clearly noted that special attention needs to be 159 

directed towards the initial saturation degree, as in the case of relative humidity, since dense 160 

concretes take a relatively longer period to reach a moisture level (content) in equilibrium with the 161 

environment. 162 

 163 

Another factor that falls under concrete batch mixture design is silica fume (a by-product from the 164 

production of elemental silicon or alloys containing silicon). Observations from fire tests indicate 165 

that RC columns made with silica fume are at a higher risk of spalling than concrete without silica 166 

fume. Columns made with silica fume not only undergo large spalling (in excess of 15%) but also 167 

have 30% lower fire resistance than traditional columns [39]. This susceptibility to spalling can be 168 

attributed to the increased compactivity facilitated by silica fume. Densely compacted concretes 169 

have lower permeability which restricts the loss of moisture during curing, and fire testing [40].  170 

 171 
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In lieu of silica fume, synthetic or organic fibers can be added to mixture design as a means to 172 

improve concrete performance. From a fire point of view, there are two types of fibers that have 173 

been proven effective; steel and polypropylene fibers. The addition of steel fibers in the amount of 174 

about 1.75% by weight can limit spalling by enhancing the tensile strength of concrete and slowing 175 

down the degradation of tensile strength with temperature rise. Polypropylene fibers can also limit 176 

spalling of concrete since these fibers melt at low temperature range (160–170°C). The melting of 177 

polypropylene fibers can create additional pores to facilitate the release of vapor pressure built up 178 

under elevated temperatures exposure for overcoming spalling [41]. The addition of 0.1-0.15% by 179 

volume was recommended by various researchers [32,37].  180 

 181 

The magnitude of concrete compressive strength can significantly influence fire-induced spalling 182 

and fire resistance of RC columns. Higher concrete strength is normally achieved through the 183 

addition of auxiliary fillers and plasticizers, both of which lead to increase density and low 184 

permeability.  185 

2.2 Column features 186 

As a rule of thumb, a large sectional size positively correlates with heat and moisture transport, as 187 

well as the capacity of larger structures to store more energy, and hence large specimens are likely 188 

to spall [42]. In one study, Kanéma et al. [43] observed that spalling only occurred in large 189 

specimens as compared to smaller specimens despite all specimens being made of the same 190 

concrete mixture and were subjected to the same heating conditions. The shape of a RC column 191 

also influences its fire and spalling resistance. That being said, edged columns (i.e. of square or 192 

rectangular configuration) attract more heat due to bi-lateral transmission of heat at corners as 193 

opposed to round columns. This faster rise in sectional temperature promotes quicker degradation 194 

in mechanical properties and develops large thermal gradients; thus, promoting spalling and lower 195 

fire resistance.  196 

 197 

The type and configuration of internal reinforcement also influence fire and spalling resistance. 198 

For example, concrete members reinforced with non-prestressed reinforcement often achieve 199 

higher fire resistance and experience less susceptibility to spalling. The poor fire resistance of 200 

prestressed reinforcement arises due to the leaner size (lower thermal mass) of prestressed 201 

members, faster degradation of strength properties in prestressing strands as compared to non-202 

prestressed reinforcement, and denser nature of prestressed concrete. The configuration of lateral 203 

reinforcement (ties) has also been noted to affect fire resistance and fire-induced spalling of RC 204 

columns. Fire tests conducted by Kodur and McGrath [27] clearly indicate that RC columns with 205 

hooked tie configuration (bent at 135° and with closer tie spacing) achieve improved fire 206 

performance. Using hooked ties firmly holds longitudinal rebars in place which minimizes 207 

movement and buckling of longitudinal bars and reduces the strains induced in concrete. 208 

2.3 Loading and heating conditions  209 

The magnitude and arrangement of applied loading, together with heating rate and intensity, are 210 

all factors that affect fire resistance ad spalling of RC columns. In general, fire resistance of a RC 211 

column is indirectly proportional to the magnitude and duration of applied loading since the loss 212 

of strength increases with a rise in temperature [25]. A note to remember is that eccentrically 213 
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applied mechanical loadings develop a couple moment of tensile and compressive stresses on the 214 

sides of a loaded column – where tensile stresses aid in accelerating cracking of concrete and 215 

compressive forces amplify the internal stress arising from vapor pressure. In addition to 216 

mechanical loading, heating conditions also significantly influence fire resistance and spalling of 217 

RC columns. Fires with rapid heating rates (i.e. hydrocarbon fires with 271°C/min for the first 218 

three minutes) can induce thermal shocks on a RC member by generating large thermal gradients, 219 

causing high thermal stresses as well as non-uniform expansion of exposed sides. Such gradients 220 

substantially increase the pore pressure generated in the concrete and lead to spalling [44]. While 221 

this section summaries key factors that are known to govern the spalling phenomenon, a more in 222 

depth discussion can be found in related works such as these published as part of the recent RILEM 223 

workshop [45].  224 

3.0 ML ENSEMBLE DEVELOPMENT  225 

Machine learning is a subset of artificial intelligence (AI) and aims to train machines (i.e. 226 

computing stations) to mimic the human-like reasoning process. The goal of ML is to leverage the 227 

large computing capacities of workstations to solve complex problems that may not be properly 228 

tackled via traditional methods (i.e. testing, analytical, or FE simulation) or those which would 229 

require specialized software or extended simulation processing. ML differs from traditional 230 

analysis methods by its capability to identify hidden patterns in existing observations (which in 231 

the context of this work refer to outcomes from fire tests etc.) by leveraging free-form and 232 

nonparametric evolutionary algorithms that do not require a predefined set of assumptions or 233 

idealization to search for solutions (as opposed to mathematical or statistical approaches) [46].  234 

3.1 Rationale 235 

The rationale behind utilizing ML in this study stems from the understanding that there exists at 236 

least one governing relation between fire-related phenomena (e.g. fire resistance and/or fire-237 

induced spalling) of RC columns with the key factors identified in Sec. 2. This relation can be 238 

arrived at through a rigorous investigation of observations from a large number of tests carried out 239 

to evaluate fire resistance and fire-induced spalling in RC columns. Given that both phenomena 240 

entitle multi-dimensional factors implies that arriving at the so-called relation(s) is effectively 241 

complex and will require thorough analysis to realize. However, this analysis could somewhat be 242 

easily achieved if one uses modern methods of a higher order than those associated with traditional 243 

approaches. Through logical understanding of a fire resistance and spalling phenomena, and not 244 

just through satisfying numerical objectives often achieved through traditional analysis, ML rises 245 

as a potential candidate.    246 

 247 

Oftentimes, the use of one ML algorithm to understand a phenomenon can be sufficient. However, 248 

recent experience has shown that this practice might lead to developing biased ML-based solutions 249 

in some situations or in some instances, may not yield to achieving an optimal solution in a timely 250 

manner [47,48]. As such, the current work explores the notion of ensemble learning. This type of 251 

ML harnesses the advantages of multi-algorithm search; thus, enabling rapid analysis that highly 252 

correlates with attaining the most optimal solution [49]. In an ensemble, a number of ML 253 

algorithms can search in harmony or in competitive arrangements to look for optimum solutions. 254 

Once a solution is identified by each algorithm, a series of fitness metrics are applied to identify 255 
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the fittest solution for a problem (say expected fire resistance duration of a RC column) [17]. 256 

Following this procedure, the identified solution is not only vetted across different search 257 

mechanisms but is also vetted through different analysis stages (see Fig. 1).  258 

 259 

 260 
Fig. 1 Flowchart of developed ML procedure for evaluating fire resistance of and spalling of RC 261 

columns 262 

 263 

In some scenarios, an ensemble may look for a qualitative solution to a problem. For example, a 264 

fire engineer may seek an answer to the following question; will a RC column with particular 265 

features spalls if exposed to fire or not? In this scenario, each algorithm in the developed ensemble 266 

will generate a “yes/no” answer (i.e. algorithm A: the column is expected to spall, algorithm B: 267 

the column is not expected to spall etc.). Hence, the ensemble reviews all answers to arrive at a 268 

decision in a similar manner to “majority voting” where the final answer of the ensemble is given 269 

as that observed by the majority of the participating algorithms.   270 

 271 

In all cases, whether a ML ensemble arrives at a numeric prediction (e.g. fire resistance in minutes) 272 

or categorial prediction (e.g. spalls/does not spall), the fire engineer needs to understand how such 273 

a decision is made. This is where explainable ML (XML) shines as such a technique is primed to 274 

Monitor ML ensemble perfomance and update ensemble if 
needed/upon availability of new obsevrations

Monitor ML ensemble perfomance and update ensemble if 
needed/upon availability of new obsevrations

Start prediction on new observations/casesStart prediction on new observations/cases

Examine explainability of ML ensemble Examine explainability of ML ensemble 

Terminate analysis (if fitness criteria is met)Terminate analysis (if fitness criteria is met)

Evaluate fitness of ML ensemble Evaluate fitness of ML ensemble 

Start ML analysis to examine fire resistance and fire-induced spallingStart ML analysis to examine fire resistance and fire-induced spalling

Select algorithms for ML ensemble (RF, ExGBT, DL)Select algorithms for ML ensemble (RF, ExGBT, DL)

Collect observations on phenomena and generate synthetic and 
augmentation data (if needed)

Collect observations on phenomena and generate synthetic and 
augmentation data (if needed)

Propose rationlae for ML investigationPropose rationlae for ML investigation
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provide complete insights into ensemble working process as opposed to the more traditional 275 

“black-box” ML approach. This explainability notion can also be used to understand how key 276 

factors (such as those listed in Sec. 2) interact with each other as well as with the outcome of a 277 

given phenomenon.  278 

 279 

Both of the above discussed points are not currently attainable using traditional fire resistance 280 

analysis approaches. For example, a fire engineer can trace stress development within a FE model 281 

throughout a FE simulation. However, any insights from such analysis will always be constrained 282 

by the input variables used in the FE analysis, which may not be in close proximity to those used 283 

in the fire tests or those used constructions (i.e. for post-fire investigation). This practice becomes 284 

problematic when FE models are extended beyond their original cases. Given that we still lack a 285 

standardized simulation procedure that is free of limiting assumptions and account for complex 286 

phenomenon associated with modern construction materials (such as spalling in HSC) casts grey 287 

shadows over the validity of extending FE models. Given that ML utilizes a vast amount of data 288 

implies that a ML analysis is capable of better representing the actual behavior of materials and 289 

structural members as opposed to FE models. 290 

 291 

Once the ML ensemble is trained and validated, then this ensemble can be applied to predict fire 292 

resistance and the possibility of fire-induced spalling of RC columns. All that is needed is to input 293 

the selected features into the developed ensemble to realize an outcome. Over time, it is a good 294 

practice to monitor the prediction capability of the ensemble as the predictivity of some ML 295 

ensembles might decay/worsen. Once additional observations are collected, the ML ensemble can 296 

be re-trained to improve its prediction capability and ensure that it is updated with advancements 297 

in concrete material technology (i.e. development of new concrete mixtures etc.) [50].  298 

3.2 Database development and proposed techniques for synthetic and augmentation data 299 

generation 300 

As the case of most ML-based analyses, a comprehensive review of literature is to be carried out 301 

to compile a database of real observations taken in fire resistance tests. In this study, two fire-302 

related phenomena are to be examined via ML, including fire resistance and spalling of RC 303 

columns. The conducted literature review has identified 167 fire tests taken on various RC columns 304 

spanning over three decades of research [31,32,59–62,51–58]. Common features in all columns 305 

were then collected. The identified features were selected to align with recommendations of earlier 306 

studies (discussed in Sec. 2) and to enable developing an XML ensemble that is useful for both 307 

fire designers and researchers [63–65]. 308 

The identified critical parameters include: 1) column width, b, 2) steel reinforcement ratio, r, 3) 309 

length, L, 4) concrete compressive strength, f, 5) steel yield strength, fy, 6) restraint conditions, K 310 

(fixed-fixed, fixed-pinned, and pinned-pinned), 7) concrete cover to reinforcement, C, 8) 311 

eccentricity in applied loading in two axes (ex and ey), 9) magnitude of applied loading, P, 10) fire 312 

exposure scenario, E (ranging from ASTM E119, hydrocarbon, design fires etc.), 11) number of 313 

exposed faces, S (1-, 2-, 3- and 4- faces), 12) fire resistance (of failure time), FR, and 13) Spalling, 314 

SP (Yes, or No). One must note that results on spalling were available on 167 RC columns, while 315 

only results from 144 test were available for fire resistance of RC columns. 316 
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Noting how observations from fire tests are scarce and limited, this work proposes the use of 317 

synthetic and augmented observations. Synthetic observations are those defined to be generated 318 

by the manipulation of real observations. Despite such manipulations, synthetic observations 319 

maintain the same schema and statistical properties as their real counterparts. Synthetic 320 

observations can be obtained via a number of procedures such as Synthetic Minority Over-321 

sampling Technique (SMOTE) and Modified-SMOTE [66]. The SMOTE procedure creates new 322 

observations which lie between any two nearest real observations joined by a straight line and then 323 

calculates the distance between two real observations in the feature space, multiplies the distance 324 

by a random number between 0 and 1, and places the newly generated synthetic observation at this 325 

new distance from one of the real observations used for distance calculation. One should note that 326 

this technique has been proven effective in a variety of machine learning problems and hence is 327 

explored herein [67]. 328 

 329 

Thus, a similar procedure to SMOTE was employed herein. In this procedure, real RC columns 330 

with similar features were clustered in pairs. Then, observations from fire tests for each RC column 331 

in each pair were compared. If both columns have spalled (or not spalled), then a third synthetic 332 

column is generated with features similar to those in the two parent real columns. The newly 333 

generated column is said to have averaged features to the real ones and a similar observation as 334 

well (i.e. if the real columns have spalled, then the synthetic column is also expected to spall since 335 

it has averaged features to the real ones). In case that two columns in a pair have different spalling 336 

observations (e.g. one column spalled, while the other did not), then the synthetic column is 337 

assumed to have the worst case scenario (for conservativeness). Based on this procedure, 166 338 

synthetic columns and observations were added to the real observations obtained from fire tests on 339 

columns. Another means to arrive at synthetic data is to use generative adversarial networks 340 

(GANs). GANs implicitly learn the probability distribution of a dataset to draw samples from its 341 

distribution space, thereby retaining the real dataset’s original underlying probability distribution.  342 

The second technique that can be used to enlarge the size of a database is to use augmented 343 

observations. Augmented observations are those obtained by means of advanced analysis methods 344 

such as validated FE models. It is worth mentioning that the use of augmented observations from 345 

various studies/investigations, as opposed to one source, overcomes many of the aforenoted 346 

limitations of FE simulations. For example, using augmented results from European researchers 347 

who are likely to apply Eurocode material models to their FE models, in addition to North 348 

American researchers who are likely to use ASCE material models in their FE models, provides a 349 

variety of observations that can come in handy to expand a fire database. In this work, 160 350 

augmented observations were collected from the open literature [72–76]. After all, the compiled 351 

database contained 494 RC columns. 352 

 353 

Figure 2 and Table 1 list additional details into the range of each of the selected features in the 354 

collected RC columns. This table also provides insights into the range of applicability of the 355 

developed ensemble and shows the close resemblance between real, synthetic, and augmented 356 

observations; thus, providing a layer of confidence into the proposed techniques. One should note 357 

that the above features were available for all collected RC columns. Still, other features can also 358 

be included as all that is needed is to collect information on a new feature. For example, the 359 
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humidity of concrete was not selected herein since it was only reported in a few studies (and not 360 

all studies) to maintain homogeneity of the compiled database. Further, this factor is not readily 361 

available to designers most of the time and hence may not be a viable input to the fire analysis via 362 

ML. Previous works provided solutions for tackling similar challenges [77,78]. 363 
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Fig. 2 Frequency of identified features of selected RC columns in the compiled database 364 

 365 

 366 

 367 
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Table 1 Statistics on collected database  369 

  b (mm) r (%) 
L 

(m) 
f (MPa) fy (MPa) 

C 

(mm) 
ex (mm) 

ey 

(mm) 
P (kN) 

FR 

(min) 

F
ir

e 
re

si
st

an
ce

 a
n

al
y

si
s 

R
ea

l 

o
b

se
rv

at
io

n
s 

Minimum 203.0 0.9 2.1 24.0 354.0 25.0 0.0 0.0 0.0 55.0 

Maximum 610.0 4.4 5.7 138.0 591.0 64.0 150.0 75.0 5373.0 389.0 

Average 350.4 2.1 3.9 55.7 439.3 42.4 12.8 3.2 1501.8 176.6 

Standard 

deviation 
105.3 0.5 0.5 33.0 61.8 7.1 23.3 12.9 1168.6 82.0 

Skewness 1.1 1.0 -0.5 0.9 1.0 -1.0 3.0 4.0 1.3 0.4 

A
u

g
m

en
te

d
 

o
b

se
rv

at
io

n
s 

Minimum 200.0 0.9 2.1 24.4 354.0 23.0 0.0 0.0 122.0 22.0 

Maximum 610.0 4.4 5.8 100.0 576.0 50.0 
150.

0 
75.0 3190.0 

391.

0 

Average 333.9 2.1 4.1 48.1 436.3 41.2 16.1 3.7 1108.1 
155.

9 

Standard 

deviation 
117.2 0.5 0.6 26.4 52.2 9.9 30.2 13.6 874.5 81.8 

Skewness 1.2 0.9 0.5 1.3 1.2 -0.8 2.7 3.7 1.3 0.2 

S
y

n
th

et
ic

 o
b

se
rv

at
io

n
s Minimum 200.0 0.3 

2.

1 
25.0 239.0 25.0 0.0 0.0 2.0 60.0 

Maximum 600.0 5.0 
5.

0 
130.0 580.0 65.0 

150.

0 
75.0 5313.0 

299.

0 

Average 400.3 2.0 
3.

7 
64.3 481.6 40.0 35.2 71.4 1981.7 

168.

0 

Standard 

deviation 
100.0 1.6 

1.

7 
57.7 102.3 5.0 12.4 71.8 1001.3 63.8 

Skewness 1.0 0.9 
0.

5 
1.3 1.0 1.0 3.0 3.6 1.2 0.2 

A
ll

 

o
b

se
rv

at
io

n
s 

Minimum 200.0 0.9 2.1 24.0 354.0 23.0 0.0 0.0 0.0 22.0 

Maximum 914.0 4.4 5.8 138.0 591.0 64.0 150.0 75.0 5373.0 636.0 

Average 324.3 2.1 4.0 49.3 449.4 40.2 15.8 2.0 1204.8 161.0 

Standard 

deviation 
99.2 0.6 0.7 28.1 60.1 8.7 29.7 10.1 1031.6 97.6 

Skewness 1.9 0.6 0.3 1.4 0.7 -0.6 2.9 5.3 1.7 0.9 

S
p

al
li

n
g

 A
n

al
y

si
s 

R
ea

l 

o
b

se
rv

at
io

n
s 

Minimum 152.0 0.3 - 15.0 - 13.0 - - 0.0 - 

Maximum 514.0 
11.

7 
- 126.5 - 64.0 - - 5373.0 - 

Average 326.1 2.3 - 42.1 - 33.5 - - 1342.0 - 

Standard 

deviation 
71.8 1.6 - 24.3 - 7.7 - - 1001.3 - 

Skewness 0.8 2.5 - 1.9 - -0.4 - - 1.6 - 

S
y

n
th

et
ic

 

o
b

se
rv

at
io

n
s 

Minimum 152.0 0.5 - 16.1 - 13.0 - - 84.5 - 

Maximum 511.0 10.8 - 119.7 - 51.0 - - 4970.0 - 

Average 325.6 2.3 - 42.0 - 33.5 - - 1338.4 - 

Standard 

deviation 
66.0 1.3 - 23.1 - 7.3 - - 911.8 - 

Skewness 0.8 2.5 - 1.9 - -0.7 - - 1.6 - 

A
ll

 

o
b

se
rv

at
io

n
s 

Minimum 152.0 0.7 - 16.0 - 25.0 - - 0.0 - 

Maximum 514.0 4.9 - 126.5 - 64.0 - - 5373.0 - 

Average 325.3 2.5 - 54.3 - 37.6 - - 1556.9 - 

Standard 

deviation 
69.4 0.8 - 27.9 - 4.4 - - 1109.1 - 

Skewness 0.7 1.0 - 1.1 - 0.6 - - 1.4 - 

 370 
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3.4 Ensemble development 371 

Fire resistance analysis through ML is quite different than that using traditional calculation 372 

approaches. Traditional approaches necessitate the development of two sets of models. In the first 373 

set, the thermal response of a RC column is arrived at. Temperature rise and propagation within 374 

the column are obtained and then are inputted into the second model set, in addition to mechanical 375 

loading, to evaluate structural response under fire conditions. Both steps of analysis can be 376 

performed at sectional or member level via a generic or a special finite element package. To enable 377 

such analysis, proper inputs such as temperature-dependent material properties, together with 378 

meticulous consideration to meshing, convergence criteria etc. are required [79,80].  379 

 380 

Unlike traditional analysis, an ML analysis can evaluate fire resistance and/or spalling tendency 381 

instantaneously and without the need to compile idealized input parameters. This is true knowing 382 

that since the outcome of fire tests (i.e. spalling or fire resistance) is known, then a properly 383 

developed ML model can relate the aforenoted and identified key features to the outcome of fire 384 

tests while implicitly accounting for temperature-dependent properties of concrete and steel and 385 

negating any need for idealization or complex model building/preparation as well as overcome 386 

convergence issues to reach a solution. For an ML ensemble analysis to start, a user must select a 387 

series of ML algorithms. The selection process can be purely arbitrary or can be taken as a result 388 

of sensitivity analysis [81].  389 

In this work, a combination of ML algorithms was examined first. This examination process aimed 390 

to identify a suitable ensemble with balanced accuracy and search/deployment speed. The selected 391 

ensemble is identified as one that contains the following algorithms: random forest (RF), extreme 392 

gradient boosted trees (ExGBT), and deep learning (DL). A brief description of these algorithms 393 

is provided herein, and additional details can be found elsewhere [82–85]. 394 

The RF algorithm randomly generates multiple decision trees (and hence the term “random forest”) 395 

to analyze a phenomenon [82]. This algorithm is a nonparametric classifier that analyzes the 396 

outcome of each individual decision tree to reach a predictive outcome. In a classification problem 397 

such as that tackling the tendency of a RC column to spall or to not spall, the majority voting 398 

method is used to arrive at the final output; such that: 399 

 400 

𝑌 =
1

𝐽
∑ 𝐶𝑗,𝑓𝑢𝑙𝑙

𝐽
𝑗=1 + ∑ (

1

𝐽
∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑗(𝑥, 𝑘)𝐽

𝑗=1 )𝐾
𝑘=1      (1) 401 

 402 

where, J is the number of trees in the forest, k represents a feature in the observation, K is 403 

the total number of features, cfull is the average of the entire dataset (initial node). The developed 404 

ExGBT also employed a maximum tree depth of 10, learning rate of 10% and 500 stages of 405 

boosting. 406 

The second algorithm is extreme gradient boosted trees (ExGBT) which is a special form of the 407 

Adaboost algorithm developed by Freund and Schapire [83]. ExGBT re-samples the collected 408 

observations into decision trees, where each tree sees a boostrap sample of the database in each 409 

iteration. ExGBT shares some similarity with RF except that ExGBT does not fit decision trees in 410 

parallel, but rather fits each successive tree to the residual errors from all the previous trees 411 

combined. As a result, ExGBT focuses each iteration on the observations that are most difficult to 412 
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predict; which becomes a good practice for the algorithm to yield high prediction accuracy (see 413 

Eq. 2).  414 

𝑌 = ∑ 𝑓𝑘(𝑥𝑖)𝑀
𝑘=1 , 𝑓𝑘 ∈ 𝐹 = {𝑓𝑥 = 𝑤𝑞(𝑥), 𝑞: 𝑅𝑝 → 𝑇, 𝑤 ∈ 𝑅𝑇}    (2) 415 

 416 

where, M is the number of additive functions, T is the number of leaves in the tree, w is a 417 

leaf weights vector, wi is a score on i-th leaf, and q(x) represents the structure of each tree that 418 

maps an observation to the corresponding leaf index [84]. The RF algorithm incorporated 50 leaf 419 

nodes, with a minimum of 5 samples to split an internal node. 420 

Deep learning algorithm refers to a multi-layered artificial neural network (ANN). This algorithm 421 

mimics the neural topology of the brain. DL starts with the input layer, which receives input 422 

variables (i.e. features of observations). This layer is connected to a series of hidden layers. These 423 

layers are often connected via nonlinear activation functions e.g. Logistic, PReLu, etc. that can 424 

generate an approximation form that permits gradient-based optimization etc. The outcome of this 425 

optimization process is then displayed in the last (output) layer [85]. In a way, DL aims to achieve 426 

a general, and primarily implicit, representation that best exemplifies a phenomenon (i.e. spalling); 427 

such that:  428 

netj = ∑ Iniwij
𝑛
𝑖=1 + bj         (2) 429 

 430 

Y = f(netj)            (3) 431 

 432 

where, Ini and bj are the ith input signal and the bias value of jth neuron, respectively, wij is 433 

the connecting weight between ith input signal and jth neuron and f is a PReLu activation function. 434 

The number of used layers is 64, with 3% learning rate, and Adam optimizer to enhance processing 435 

of observations.  436 

4.0 PERFORMANCE AND INSIGHTS INTO XML ENSEMBLE   437 

The developed ML ensemble was trained on 70% of the complied database and tested against 30% 438 

of the remaining RC columns. This 70/30 ratio split was arrived at as part of a preliminary analysis 439 

to identify the most accurate split after a series of combinations of recommended splits were tried 440 

[58]. This section provides details on the performance of the developed ensemble, together with 441 

insights on both fire phenomena examined herein. 442 

4.1 Fire-induced spalling analysis 443 

The performance of the ensemble in correctly predicting spalling of RC columns can be evaluated 444 

through a look at its performance metrics. Primarily, three performance metrics were used for the 445 

spalling phenomenon, Logarithmic Loss (i.e. log Loss), area under the receiver operating 446 

characteristic (ROC) curve and confusion matrix. The log loss metric measures the performance 447 

of a classification ML ensemble whose output is a probability value between 0 and 1. A perfect 448 

ML ensemble would have a log loss of zero. In a binary classification such as that tackled here, 449 

the log loss can be estimated as: 450 

𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 = −(𝑦𝑙𝑜𝑔(𝑝) + (1 − 𝑦) log(1 − 𝑝))      (4) 451 

 452 

 where, y and p are actual and predicted observations.  453 

 454 
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The ROC curve, on the other hand, is a graphical plot that illustrates the predictive capability of a 455 

binary ensemble as its discrimination threshold is varied [86]. Since ROC is a probability curve, 456 

then the area under this curve measures the degree of separability. For a perfect ensemble, the area 457 

under this curve should be equal to unity. The performance of the developed ensemble is 0.35(0.36) 458 

and 0.91(0.90) for log loss error and area under the curve, respectively, for training and (validation) 459 

stages. Other metrics from the confusion matrix were also investigated. For example, the ensemble 460 

reached: sensitivity (95%), fallout (36%), specificity (63%), precision (86%), and accuracy (86%). 461 

The above clearly implies that the developed model is quite accurate given the complexity and 462 

randomness of spalling occurrence as a phenomenon. It is worth noting that the developed 463 

ensemble is capable of accurately analyzing 350 RC columns for spalling per second (this 464 

calculation speed is based on a typical desktop with an Intel i7 processor and 16 GB RAM 465 

memory); thus, significantly accelerating fire design in our practice.  466 

 467 

Table 2 shows the results of feature association (i.e. mutual information) and feature correlation 468 

between the selected features and fire-induced spalling. This matrix provides insights into 469 

association strength between pairs of features which shows the extent to which features depend on 470 

each other where large values indicate serious collinearity between the features involved. This 471 

matrix shows that all selected features have positive dependence with fire-induced spalling (with 472 

values close to 1.0 implying higher association). In more detail, r, f, b, P, and C have the strongest 473 

individual dependence with fire-induced spalling (in this order). It is worth noting that b and r and 474 

C and r also have a strong association with each other. The same table also shows the selected 475 

features with positive or negative correlation with fire-induced spalling. One should note that a 476 

correlation of ±1.0 implies perfect correlation, 0.5-1.0 (strong), 0.3-0.5 (moderate), 0.3-0.1 (weak), 477 

0-0.1 (none). In more detail, f, b, and P have the highest positive individual correlation with fire-478 

induced spalling. It is worth noting that P and f and b and P also have strongly correlated with each 479 

other.  480 

Table 2 Feature analysis between selected features and spalling 481 

Association matrix 

 SP r f b P C 

SP 1.00 0.52 0.45 0.41 0.33 0.34 

r  1.00 0.31 0.60 0.34 0.57 

f   1.00 0.340 0.25 0.34 

b    1.00 0.41 0.45 

P     1.00 0.39 

C      1.00 

Correlation matrix 

  b r f C P SP 

b 1.00      

r -0.19 1.00     

f 0.15 -0.01 1.00    

C -0.02 0.21 0.40 1.00   

P 0.60 0.07 0.65 0.34 1.00  

SP 0.28 -0.06 0.14 -0.19 0.20 1.00 
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On a similar note, the ML ensemble shows the different impacts of the selected features by taking 482 

their interaction into account as opposed to their individual dependence to the spalling 483 

phenomenon. This analysis identifies which features are driving model predictions the most using 484 

the SHAP (SHapley Additive exPlanations) technique [87] to explain individual predictions. This 485 

analysis infers that C (100%), f (95%), b (88%), r (66%), and P (44%) are the most impactful 486 

features when it comes to spalling. From this, one can see the main three features that can 487 

significantly affect spalling of RC columns are C, f, and b. Figure 3 shares additional insights into 488 

the impact of each of these features on the increased possibility of spalling (when all other features 489 

remain constant). It is quite clear that increasing cross sectional size and compressive strength of 490 

concrete is associated with higher susceptibility to spalling while increasing concrete cover seems 491 

to limit spalling.  492 

 493 
Fig. 3 Insights into key factors influencing spalling in RC columns 494 

4.2 Fire resistance analysis  495 

The fire resistance analysis carried out herein comprised of two approaches. In the first approach, 496 

a RC column can be classified to belong to a class that falls under one, two, three, or four hour fire 497 

rating. A more refined approach was also developed in which a RC column is analyzed to evaluate 498 

its fire resistance in minutes. Both approaches are un-coupled and can be run in parallel to arrive 499 

at fire resistance. The reasoning behind developing two approaches is to provide fire researchers 500 

and designers with a convenient tool that may fit in different applications.  501 

The prediction accuracy of the developed ensemble was then evaluated twice (once for each 502 

approach). In the first approach, the ensemble was not able to achieve as high of metrics as that in 503 

the spalling case. The ensemble achieved a relatively high log loss error of 0.87 and 0.98 for 504 

validation and testing, respectively, but managed to realize a comparatively good area under the 505 

ROC curve of 0.88 and 0.84 for the aforenoted stages. A key point to remember is that some of 506 

the used RC columns failed abruptly in under 60 min (especially those collected from Hass tests 507 

[88] and seemed to adversely affect the ML analysis. Further investigation is currently underway 508 

to identify possible solutions to overcome this issue and salvage these columns, as opposed to 509 
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simply neglecting such columns from the ML analysis. As such, the discussion on this approach 510 

will be visited in a future work. 511 

 512 

On a more positive note, the performance of the ensemble was much improved when it came to 513 

the second approach for fire resistance analysis. For this approach, more appropriate metrics are 514 

to be applied as the analysis shifts from classification into regression. These metrics were, 515 

correlation coefficient (R), coefficient of Determination (R2), and Root Mean Squared Error 516 

(RMSE) – See Eq. 5-7. These metrics come to 0.89(0.86), 0.80(0.74), and 45.59(41.49) for training 517 

and testing, respectively.  518 

𝑅 =
∑ (𝐴𝑖−𝐴𝑖)(𝑃𝑖−𝑃𝑖)

𝑛

𝑖=1

√∑ (𝐴𝑖−𝐴𝑖)2
𝑛

𝑖=1
∑ (𝑃𝑖−𝑃𝑖)2

𝑛

𝑖=1

          (5) 519 

𝑅2 = 1 − ∑ (𝑃𝑖 − 𝐴𝑖)
2𝑛

𝑖=1 / ∑ (𝐴𝑖 − 𝐴𝑖)
2𝑛

𝑖=1          (6) 520 

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
           (7) 521 

  522 

where, E is the error between actual observation (A) and predicted observations (P). The 523 

bar sign refers to the average of observations. 524 

 525 

It can be seen from the above validation that the ensemble can be used with confidence to further 526 

examine the phenomenon of fire resistance of RC columns. Table 3 shows the outcome of 527 

association and correlation analysis between the identified features and fire resistance (FR) of RC 528 

columns. The first row of this matrix signifies the individual dependence between all features and 529 

FR. As can be seen in the table, all features seem to have a relatively comparable dependence 530 

except for S, ey, and E. The same matrix also shows that there is a strong association between the 531 

majority of features and L, fy, and C. Table 3 also shows the correlation matrix of identified features 532 

and fire resistance of RC columns. The bottom row of this matrix signifies the individual 533 

dependence between all features and FR. As one can see, all features seem to have a relatively 534 

comparable correlation except for r, ey, S, and E. The same matrix also shows that there is a varying 535 

degree of correlation between the majority of features b, K, C, L, fy, and C. 536 
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Table 3 Feature analysis between selected features and fire resistance  537 

Association matrix 

 FR L C b fy r ex P K f S ey E 

FR 1.00 0.29 0.27 0.26 0.29 0.31 0.23 0.27 0.17 0.25 0.03 0.06 0.10 

L  1.00 0.55 0.51 0.63 0.62 0.37 0.40 0.36 0.48 0.02 0.09 0.20 

C   1.00 0.39 0.49 0.60 0.30 0.20 0.15 0.36 0.01 0.05 0.13 

b    1.00 0.46 0.48 0.25 0.42 0.18 0.36 0.03 0.12 0.18 

fy     1.00 0.59 0.35 0.38 0.33 0.53 0.01 0.06 0.13 

r      1.00 0.26 0.39 0.31 0.46 0.02 0.07 0.17 

ex       1.00 0.28 0.17 0.25 0.05 0.17 0.09 

P        1.00 0.17 0.38 0.02 0.07 0.13 

K         1.00 0.21 0.01 0.04 0.04 

f          1.00 0.02 0.11 0.13 

S           1.00 0.20 0.00 

ey            1.00 0.01 

E             1.00 

 Correlation matrix 

  b r L f fy K C ex ey P E S FR 

b 1.00             

r -0.12 1.00            

L -0.17 0.26 1.00           

f 0.24 0.06 -0.11 1.00          

fy -0.25 -0.35 -0.08 -0.48 1.00         

K 0.02 -0.28 0.33 -0.08 0.17 1.00        

C 0.32 0.31 -0.22 0.28 -0.64 -0.36 1.00       

ex -0.09 0.05 0.36 -0.23 0.15 0.28 -0.26 1.00      

ey 0.16 -0.05 0.00 -0.14 -0.14 0.15 0.16 0.18 1.00     

P 0.67 0.12 -0.21 0.56 -0.38 -0.21 0.28 -0.21 0.03 1.00    

E -0.01 0.00 0.01 -0.03 0.07 0.02 -0.08 0.04 0.02 -0.01 1.00   

S -0.05 0.02 -0.05 -0.07 -0.17 -0.17 0.19 -0.04 0.17 -0.03 -0.17 1.00  

FR 0.38 0.08 -0.44 0.22 -0.28 -0.60 0.56 -0.37 -0.04 0.36 -0.05 0.04 1.00 

538 
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The ML ensemble also provides insights into the different impacts of the selected parameters by 539 

taking their interaction into account as opposed to their individual dependence on the fire 540 

resistance phenomenon using SHAP. This analysis infers that C (100%), P (63%), K (54%), ex 541 

(52%), and b (39%) are the most impactful features when it comes to fire resistance. Surprisingly, 542 

f, r, L, and fy did not rank among the top five features, possibly due to the fact that such features 543 

had an imbalanced frequency, as shown in Fig. 2. A closer look into the highly impactful features 544 

shows that they belong to two main factor groups, loading, and geometric features. Figure 4 shares 545 

additional insights into the impact of each of these features on the increased possibility of improved 546 

fire resistance (when all other features remain constant). For example, eccentrically loaded 547 

columns are expected to fail much earlier than those under concentric loading resulting from high 548 

stresses due to uni- or bi-directional loading. Similarly, bigger columns are also expected to have 549 

larger fire resistance resulting from higher thermal inertia. 550 

 551 
Fig. 4 Insights into key factors influencing fire resistance of RC columns 552 

 553 

In order to further highlight the accuracy of the developed ensemble, fire resistance predictions 554 

obtained herein are also compared against codal provisions adopted by Eurocode 2 [89], and 555 

AS3600 [90], and this comparison is plotted in Fig. 5. This figure infers those predictions from the 556 

ensemble agree well with measured fire resistance observed in fire tests, especially for those 557 

exceeding 4 hours of fire exposure. On the other hand, predictions obtained from codal methods 558 

seem to struggle to accurately predict fire resistance in RC columns. One should still note the 559 

adequacy of Eurocode 2 predictions for columns within the 60-240 minute range beyond which 560 

these predictions seem to be underestimated – and thus, predictions from Eurocode 2 method 561 

exceeding 240 min can be disregarded. It is worth noting that both codal methods primarily account 562 

for standard fire exposure and may entail lengthy procedures. On the other hand, the developed 563 

ensemble is capable of analyzing fire resistance under various conditions, many of which are not 564 

covered by codal procedure for 85 RC columns per second.  565 
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(a) Predictions from ensemble  

Applicability (0-600 min) 

 

 

 

 

(b) Eurocode 2 method 

𝑅 = 120 (
𝑅𝑓𝑖+𝑅𝑎+𝑅𝑙+𝑅𝑏+𝑅𝑛

120
)

1.8

 , and 𝑅𝑓𝑖 = 83 (1 − 𝜇𝑓𝑖
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0.85

𝛼𝑐𝑐
+𝜔

), 𝜔 =
𝐴𝑠𝑓𝑦𝑑

𝐴𝑐𝑓𝑐𝑑
 

where, 

R = fire resistance of column (min), 

αcc = coefficient for compressive strength, 

Ra = 1.6(a-30); a is the axis distance to the longitudinal steel bars (mm); 25 

mm ≤ a ≤ 80 mm, 

Rl = 9.6(5-lo,fi); lo,fi is the effective length of the column under fire 

conditions; 2 m ≤lo,fi ≤ 6 m; values corresponding to lo,fi = 2 m give safe 

results for columns with lo,fi < 2 m, 

Rb = 0.09b’; b’ = Ac/(b+h) for rectangular cross-sections or the diameter of 

circular cross sections, 

Rn = 0, if 4 rebars are used, and 12 for more than 4 rebars. 

Performance metrics: R = 0.7, R2 = 0.49 

Applicability (60-240 min) 
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(c) AS3600 method 

𝑅 =
𝑘 × 𝑓𝑐

1.3×𝐵3.3𝐷1.8

𝑁5×𝑁1.5× 𝐿𝑒
0.9   

where, 

R = fire resistance of column (min), 

k = a constant dependent on cover and steel reinforcement ratio (equals to 

1.47 and 1.48 for a cover less than 35 mm and greater than or equal to 35 

mm, respectively), 

fc = 28-day compressive strength of concrete (MPa), 

B = least dimension of column (mm), 

D = greatest dimension of column (mm), 

N = axial load during fire (kN), 

Le = effective length (mm) 

Performance metrics: R = 0.22, R2 = 0.05 

Applicability (60-240 min) 

 

Fig. 5 Comparison of fire resistance prediction in RC columns using different approaches  
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5.0 LIMITATIONS AND FUTURE IMPROVEMENTS 566 

One should keep in mind that an understanding of ML shows that ML algorithms analyze 567 

observations as pure data points with limited regard to their physical meaning. As such, a designer 568 

should always strive to develop explainable ML algorithms. To overcome the limited amount of 569 

fire tests available in the structural fire engineering domain, this paper proposed two methods to 570 

facilitate ML into structural fire engineering and other applications that utilize validated ML 571 

ensembles, Monte Carlo and Bayesian simulations to generate synthetic and augmented 572 

observations are being tested as they might prove handy in the future. Future works are to strive 573 

to develop much larger databases with higher dimensionality to enable fire designers and engineers 574 

to attain additional insights into the workings of fire-related phenomena. Given the randomness of 575 

fire, a good practice that can significantly improve ML predictions is for future fire testing to 576 

allocate duplicated (repeatability) testing. 577 

 578 

Future research works are invited to target developing coding-free ML methods to allow 579 

stakeholders (i.e., government agents and practitioners etc.) with limited coding experience from 580 

adopting and applying ML tools in structural fire engineering, safety, and design applications. A 581 

key research needs that the community needs to create standardized ML procedures to develop 582 

and validate ML algorithms and tools to further facilitate a harmonious acceptance of ML and 583 

facilitate wider adoption of this modern technology.  584 

 585 

6.0 CONCLUSIONS 586 

This paper presented the development of a novel ML ensemble to enable explainable and rapid 587 

assessment of fire resistance and fire-induced spalling of reinforced concrete (RC) columns. The 588 

developed approach comprises an ensemble of three algorithms namely; random forest (RF), 589 

extreme gradient boosted trees (ExGBT), and deep learning (DL). The developed ML ensemble 590 

has been calibrated and validated for columns is subjected to standard and design fire exposures 591 

or under one-, two-, three- or four-sided fire exposure. The following conclusions could also be 592 

drawn from the results of this study: 593 

• ML can provide a modern and robust tool to evaluate fire-induced phenomena in structural 594 

members. For example, the developed ML ensemble is capable of analyzing the 595 

susceptibility to fire-induced spalling and fire resistance of 350 and 85 RC columns per 596 

second, respectively.  597 

• The ML analysis identified concrete cover thickness, compressive strength, and geometric 598 

size of the column to be of the highest importance to the spalling phenomenon. The same 599 

analysis also shows that concrete cover, the magnitude of applied loading, and restraint 600 

conditions to have a higher influence on fire resistance of columns.  601 

• The developed ensemble can be extended to cover other structural members or fire 602 

conditions. 603 

• Some of these challenges that may limit the full integration of ML into structural fire 604 

engineering applications can be overcome through two newly proposed techniques to use 605 

synthetic and augmented observations, as well as through future efforts designed to 606 

leverage ML into fire tests and simulations. 607 
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7.0 List of Notations 608 

(ex and ey: Eccentricity in two  609 

ANN: Artificial Neural Networks 610 

b: Column width 611 

C: Concrete cover to reinforcement  612 

DL: Deep learning  613 

E: Fire exposure scenario  614 

ExGBT: Extreme gradient boosted trees  615 

f: Concrete compressive strength  616 

FE: Finite element  617 

FR: Fire resistance  618 

fy: Steel yield strength  619 

GAN: generative adversarial networks 620 

HSC: High strength concrete  621 

K: Restraint conditions  622 

L: Length  623 

ML: Machine learning  624 

P: Magnitude of applied loading  625 

R: Correlation coefficient  626 

r: Steel reinforcement ratio 627 

R2: Coefficient of Determination 628 

RC: Reinforced concrete  629 

RF: Random forest  630 

ROC: Receiver operating characteristic curve 631 

RSME: Root mean squared error  632 

S: Number of exposed faces  633 

SHAP: SHapley Additive exPlanations technique  634 

SMOTE: Synthetic Minority Over-sampling Technique  635 

SP: Spalling  636 

UHPC: Ultra-high performance concrete 637 

XML: Explainable ML 638 
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