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Abstract 20 

Machine learning (ML) continues to rise as an effective and affordable method of tackling 21 

engineering problems. Unlike other disciplines, the integration of ML into structural and fire 22 

engineering domains remains deficient. This is due in part to the lack of benchmark databases to 23 

compare the effectiveness of ML models. In order to bridge this knowledge gap, this paper 24 

presents a benchmark examination of common supervised learning ML algorithms that can be 25 

easily deployed into structural and fire engineering problems. The selected algorithms include; 26 

Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosted Trees (ExGBT), Light 27 

Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual 28 

Neural Network (KDP), and are used with their default values to establish a proper benchmark 29 

against six databases. The compiled datasets have been thoroughly tested and span two domains, 30 

structural engineering; 1) elemental response of concrete-filled steel tubular (CFST) circular 31 

columns at ambient conditions, 2) shear response of cold-formed steel (CFS) channels with 32 

slotted webs, 3) compressive strength of concrete, 4) fatigue life data, 5) shear strength of 33 

reinforced concrete (RC) beams and FRP-strengthened RC beams; and fire engineering, 6) fire 34 

behavior of RC concrete columns in terms of spalling occurrence and fire resistance. This study 35 

also investigates a variety of commonly used performance metrics that are applicable to 36 

regression and classification-based ML problems. We invite ML users to apply their models to 37 

the presented databases to establish a benchmark by mean of external validation and then extend 38 

their models to other problems and databases. Collectively, the presented work establishes the 39 

first step towards a unified framework that can be used to accelerate the adoption of ML into 40 

structural and fire engineering domains.  41 

 42 
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Introduction 44 

Engineers tend to design experiments to examine problems [1]. Naturally, such experiments are 45 

limited in their number of test specimens and parameters, and are also articulated to fit the 46 

available testing equipment and facilities. To ensure comparability of tests, testing standards 47 

(i.e., ASTM, ISO etc.) were established. Such standards provide a unified reference for test 48 

methods, equipment, and specifications for various testing scenarios and environments. 49 

Regardless of the test in question, the notion of a testing standard is to ensure compliance to a 50 

certain procedure that allows duplication of results among different stakeholders. Within the 51 

structural and fire engineering domains, testing standards primarily exist for material property 52 

(e.g. testing for compressive strength of concrete etc.), and examination of elemental behavior 53 

(to some extent) [2–4].  54 

In lieu of experiments, engineers may also utilize advanced numerical tools such as finite 55 

element (FE) methods to model material and elemental response at ambient or fire conditions. 56 

Advancements in such numerical tools were made possible as a result of developing improved 57 

computing workstations with fast processing units that can be obtained conveniently. In a way, 58 

numerical methods provide users with affordable and “logical” means to predict structural and 59 

fire engineering phenomena – noting how FE is founded upon solving partial differential 60 

equations which are formulated through functional minimization techniques [5].  61 

A common practice of utilizing FE methods is to first validate predictions from a developed FE 62 

model against that obtained from a real test. Such validation is often displayed in terms of a chart 63 

with two series; thereby comparing predictions from FE model and measurements from 64 

experiments [6,7]. The open literature seems to agree that a “good validation” is that which has a  65 

5-20% variation between FE predictions and test measurements [8–13]. However, establishing a 66 

good agreement is often subjective as we continue to lack a standardized method to establish 67 

such validation. Despite the lack of a standardized procedure not only to develop a FE model, or 68 

carry out a simulation but also to validate such a simulation, the use of FE modeling is regarded 69 

as a cornerstone within the civil engineering industry [14–18].  70 

Still, a few questions might arise that may question the suitability of FE simulation as a tool. For 71 

example, what are the recommended element types to be used in a specific FE model aimed to 72 

explore a given phenomenon? What material models are considered proper to model such a 73 

phenomenon? What convergence criteria and solution technique should one use in a modeling a 74 

specific problem? Moreover, what constitutes a good FE model? And how can we ensure that a 75 

developed FE model can be safely applied beyond its intended use or range of applicability? In a 76 

way, and at this day and age, the use of FE modeling seems to be treated as propriety 77 

information, and often regarded as an art with a complementary scientific component [19].  78 

The above also brings in a few questions in light of the rise of Machine learning (ML) as a 79 

potential new method for tackling structural and fire engineering problems [20–23]. Simply put, 80 

ML can be thought of ML is a universal method that can be applied to virtually any engineering 81 

problem. In a way, ML can be thought of as a software that can be applied to explore the 82 

observations noted in our databases. Thus, the following questions may primarily be of 83 
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importance, especially to researchers and practicing engineers interested in adopting ML. For 84 

example: What algorithms can one use? Are all algorithms the same? Do algorithms need to be 85 

developed from scratch? Or can existing algorithms (pre-developed) be used as is? Where to get 86 

data to develop ML models? How to validate such models? As one can see, these questions 87 

mirror those outlined above and others not mentioned herein for brevity (e.g., what coding 88 

language to use?). The authors of this work believe that addressing the above questions early and 89 

during the current rise of ML will not only be beneficial to this community but will help 90 

facilitate the adoption of ML as a new method of choice. As such, the primary motivation behind 91 

this work builds upon similar calls for developing validation and benchmarking procedures for 92 

FE models [24–27] and aims to set the stage toward a unified ML procedure within structural 93 

and fire engineering domains and by structural and fire engineers.  94 

A closer look into the open literature shows that publications with a ML theme in structural 95 

and/or fire engineering continue to steadily rise (see Fig. 1). Noting how parallel fields have 96 

embraced ML indicates that ML will continue this positive trend. In addition to our examination 97 

of global trends, a deep dive into the open literature highlights how ML has been successfully 98 

used in a variety of problems. For example, Behnood and Golafshani [28,29] developed a series 99 

of ML models to examine properties of concrete derivatives (traditional concrete, concrete with 100 

waste foundry sand, and high-performance concrete), and asphalt materials with notable success 101 

and have led to creating new and simple models that can predict the properties of concrete and 102 

asphalt materials. In addition, the works of Mangalathu et al. [30,31] showcased how ML models 103 

can be used to predict the seismic and structural response of concrete shear walls and bridges, 104 

which has also led to developing open-source classification models. Degtyarev [32,33] 105 

successfully developed a database and an Artificial Neural Network (ANN) to examine the 106 

response of shear strength of CFS channels with slotted webs with high accuracy exceeding 107 

95%. The collaboration of Lopes and Bobadilha [34,35] has resulted in novel ML models that 108 

were applied to evaluating the quality of timber materials. These models achieved notable 109 

accuracy exceeding 75%, and were shown to be convertible into mobile phone applications. 110 

Additional works that applied ML into this domain were also identified by other research groups 111 

[36–44], and carried out by the authors [45–52]. 112 

 113 
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 114 
Fig. 1 ML-based publication trends during 2000-2020 115 

This work aims to present a benchmarking study that applies commonly used supervised learning 116 

algorithms (with default settings) to publicly available databases with a goal to establish a first 117 

documentation and examination for validation of ML models. The selected algorithms include; 118 

Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosted Trees (ExGBT), Light 119 

Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual 120 

Neural Network (KDP). Furthermore, this paper showcases commonly used validation and 121 

performance metrics that can be applied to regression and classification problems by examining 122 

six large datasets covering concrete, and steel materials and structures, and conveniently named 123 

StructuresNet and FireNet.  124 

The intend of this paper is to outline a systematic procedure to maintain repeatability and 125 

benchmarking of commonly used ML models within the structural and fire engineering domains. 126 

We would like to emphasize that the goal of the shown analysis is not to finetune algorithms to 127 

report upon the best performing algorithm to examine a particular problem, nor to guarantee 128 

tuning of algorithms to chase high metrics, but rather to apply the selected algorithms in their 129 

default settings to allow interested readers from repeating this work to compare the performance 130 

of their algorithms and then aim to develop improved models (both of which may encompass 131 

similar or other types of algorithms to that used herein). By using algorithms in their default 132 

settings, the attained performance of these algorithms is then “benchmarked” and documented. 133 

Such benchmarking will allow future ML users from also benchmarking newly developed ML 134 

models or ensembles and compare their performance against that of the most commonly used 135 

models reported in our domains on the presented databases. We hope that this paper founds an 136 

approach that can be further massaged by the collective works in our domains to establish a 137 

uniform, and possibly standardized, mean to apply ML models to fully harness the positive 138 

potential of this technology in the near future. The message of this work aligns with that 139 

proposed by other researchers that focused on FE models [24–27]. 140 
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Description of Databases 141 

This section describes the examined six databases of varying size and scope within the structural 142 

and fire engineering disciplines in details. These databases cover re-occurring problems of 143 

simple and complex nature and fall under regression and classification problems. Information 144 

with regard to the history of each database, and to statistical distribution are provided herein for 145 

brevity. Please note that a more in-depth analysis on each database can be found in their 146 

respective references [32,48,53–59]. Table 1 gives insights into the presented databases. One 147 

should also note that there is very limited data on fire-exposed structural elements and structures; 148 

which is reflected by the smaller size of FireNet as opposed to StructuresNets. All of the 149 

presented databases are hosted online on Mendeley public repositories, as well as original papers 150 

(and complete links to these databases are shown herein: Database 1 [59]. Database 2 [122]. 151 

Database 3 [123]. Database 4 [63,64]. Database 5 [55,67]. Database 6 [54]).  152 

Table 1 Details on StructuresNet and FireNet1 153 

Database Domain Application Category 
No. of data 

points 
Basis  References 

Thai 

database 

Structural 

engineering 

(StructuresNet)  

Design of CFST 

columns 

Regression 

3,103 170 tests [58,59] 

Degtyarev & 

Degtyareva 

database 

Shear strength of 

CFS channels with 

slotted webs 

3,512 
FE 

simulations 
[32] 

Yeh 

database 

Compressive 

strength of high-

performance 

concrete  

1,030 tests [57] 

Abdalla & 

Hawileh 

database 

Fatigue life data 59 tests [48] 

Abdalla et 

al. database 

Shear strength of 

RC and FRP-

strengthened beams 

290 tests [55,56] 

Naser & 

Kodur 

database 

Fire 

engineering 

(FireNet) 

Fire resistance and 

spalling response 

of reinforced 

concrete columns 

Regression 

and 

Classification 

(binary and 

multi-class) 

306 

140 tests 

and 169 FE 

simulations 

[53,54] 

 154 

 
1 A historical, rough and traditional rule of thumb is that a minimum set can be 10 cases per predictor per van 

Smeden et al. [124]. However, this rule of thumb has been associated with some limitations (as noted by Riley et al. 

[125]) and hence a revised 23 cases per predictor criteria is proposed. As of this moment, a series of investigation 

continue to be carried out to better answer the question of the minimum size of databases needed for a ML analysis. 

In all cases, our databases satisfy both, the traditional criterion, and newly proposed criterion.  
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Database on concrete-filled steel tubular (CFST) columns (StructuresNet 1: Thai database) 155 

A comprehensive database that covers four types of concrete-filled steel tubular (CFST) columns 156 

was developed by Thai et al. [58,59]. This database collected 3,103 notable tests on CFST 157 

columns collected from over 170 studies and falls under a regression database. The selected 158 

columns cover a range of configurations (short, slender, circular, square, and rectangular 159 

sections) that were tested under concentric and eccentric loading.  160 

This database documents geometric features in terms of: 1) effective length, Le, 2) tube 161 

thickness, t, 3) tube diameter, D, and material properties in terms of 4) yield stress, fy, 5) 162 

compressive strength, fc, of in-filled concrete of CFST columns. Other features were also 163 

included such as modulus of concrete and steel, ultimate strength of steel section, load eccentrics 164 

etc. For sake of this study, 1,245 circular CFST columns that were tested under concentric 165 

loading are examined herein. A graphical distribution of all features in this database is plotted in 166 

Fig. 2 and Table 2 summarizes the main attributes of the collected database in terms of material 167 

and geometric features.  168 

Table 2 also shows that this database covers a practical range of CFST columns. For example, 169 

the minimum and maximum diameters of circular columns range between 44.45 mm and 170 

1020.00 mm. The thickness range of the same columns varies between 0.52-16.54 mm. The 171 

range of yield strength of steel tubes and compressive strength of concrete filling is from 9.17 172 

MPa to 193.30 MPa for concrete, and from 115.00 MPa to 853.00 MPa for steel. A sensitivity 173 

analysis was carried out to identify a correlation between all features compiled in this database. 174 

The outcome of this analysis shows that of all features, geometric features (D, and t) are of the 175 

highest importance. One should note that this sensitivity analysis is independent of the used ML 176 

model.  177 
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Fig. 2 Frequency of identified features of selected CFST in the compiled database 178 
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Table 2 Key statistics from CFST database. 179 

Section Features D (mm) t (mm) D/t Le (mm) fy (MPa) f'c (MPa) 

Circular 

(concentric 

loading) 

Min 44.45 0.52 7.42 152.35 178.28 9.17 

Max 1020.00 16.54 220.93 5560.00 853.00 193.30 

Average 158.52 4.31 44.28 1060.53 336.35 50.21 

Standard 

deviation 
105.42 2.45 32.37 1005.28 90.89 31.57 

Median 127.3 4.00 33.33 662.00 325.00 41.00 

Skewness 3.71 1.58 2.86 1.98 2.18 2.06 

        

Parameter  D fc fy Le t N 

D 1.000      

fc -0.003 1.000     

fy 0.072 0.030 1.000    

Le 0.201 -0.154 0.080 1.000   

t 0.478 -0.022 0.238 0.216 1.000  

N 0.911 0.126 0.145 0.109 0.549 1.000 
N: axial capacity (kN). 180 

Database on shear strength of cold-formed steel (CFS) channels with slotted webs 181 

(StructuresNet 2: Degtyarev & Degtyareva database) 182 

The second database falls under a regression database and compiles observations taken from 183 

3,512 FE simulations aimed to investigate the elastic shear buckling loads and the ultimate shear 184 

strengths of CFS channels with slotted webs as carried out by Degtyarev & Degtyareva [60–62], 185 

and recently published at [32]. In this database, the ultimate shear strengths of the CFS channels 186 

were determined from FE models that account for material and geometric nonlinearities, as well 187 

as initial geometric imperfections – thereby making this dataset rich with realistic information.  188 

Overall, this database accounts for 15 features: 1) channel depth, D, 2) channel flange width, B, 189 

3) channel flange stiffener length, B1, 4) channel thickness, t, 5) length of slots, Lsl, 6) height of 190 

slots, Wsl, 7) spacing of slots in the longitudinal direction, Ssl, 8) spacing of slots in the transverse 191 

direction, Bsl, 9) number of perforated regions, N, 10) number of slot rows, n, 11) yield stress of 192 

steel, fy, 12) type of boundary conditions: realistic and test setup (designated as 1 and 2, 193 

respectively), 13) inside bend radius, r, 14) the aspect ratio, a/h, and 15) height of the 194 

longitudinal stiffener, hst, that can be used to predict the elastic shear buckling load, Vcr, and/or 195 

the ultimate shear strength, Vn (see Fig. 3).  In this benchmark study, the elastic shear buckling 196 

load, Vcr will be solely used. The outcome of the sensitivity analysis is listed in Table 4 and 197 

shows strong correlation between channel thickness and inside bend radius, and elastic shear 198 

buckling load. It is worth noting that the inside bend radius was taken as 2t in all models, and 199 

hence the strong correlation (noting that channel thickness has a strong correlation with Vcr). 200 
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Fig. 3 Frequency of identified features of selected channels in the compiled database 205 
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Table 4 Statistics from collected database. 211 

 
D 

(mm) 
B (mm) 

B1 

(mm) 

t 

(mm) 

Lsl 

(mm) 

Wsl 

(mm) 

Ssl 

(mm) 

Bsl 

(mm) 
N n 

fy 

(MPa) 
BC 

r 

(mm) 
a/h 

hst 

(mm) 
Vcr (N) 

Minimum 150.0 20.0 0.0 1.0 60.0 3.0 85.0 7.5 1.0 6.0 250.0 0.0 2.0 0.5 0.0 401.9 

Maximum 250.0 95.0 26.0 3.0 90.0 7.0 115.0 11.5 2.0 12.0 500.0 - 6.0 1.5 60.0 309322.4 

Average 225.8 57.8 13.0 2.0 75.0 5.0 100.0 9.5 1.7 8.0 490.9 - 4.0 1.0 19.6 32107.1 

Standard 

deviation 
35.4 13.5 4.3 0.8 11.0 1.5 7.3 1.0 0.4 2.4 46.9 - 1.6 0.1 22.0 37675.0 

Skewness -1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.8 -4.9 - 0.0 0.0 0.7 2.3 

                 

Parameter 
D 

(mm) 
B (mm) 

B1 

(mm) 

t 

(mm) 

Lsl 

(mm) 

Wsl 

(mm) 

Ssl 

(mm) 

Bsl 

(mm) 
N n 

fy 

(MPa) 
BC 

r 

(mm) 
a/h 

hst 

(mm) 
Vcr (N) 

D (mm) 1.000                

B (mm) 0.648 1.000               

B1 (mm) 0.000 0.000 1.000              

t (mm) 0.000 0.000 0.000 1.000             

Lsl (mm) 0.000 0.000 0.000 0.000 1.000            

Wsl (mm) 0.000 0.000 0.000 0.000 0.000 1.000           

Ssl (mm) 0.000 0.000 0.000 0.000 0.000 0.000 1.000          

Bsl (mm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000         

N 0.218 0.131 0.000 0.000 0.000 0.000 0.000 0.000 1.000        

n 0.370 0.248 0.000 0.000 0.000 0.000 0.000 0.000 0.012 1.000       

fy (MPa) -0.133 -0.103 0.000 0.000 0.000 0.000 0.000 0.000 -0.008 -0.079 1.000      

BC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000     

r (mm) 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000    

a/h 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000   

hst (mm) 0.311 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.539 0.131 -0.003 0.000 0.000 0.000 1.000  

Vcr (N) -0.058 -0.0298 0.004 0.726 -0.306 -0.130 0.061 0.078 0.020 -0.118 -0.031 0.0981 0.726 -0.1474 0.012 1.000 
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Database on compressive strength of high-performance concrete (StructuresNet 3: Yeh 212 

database) 213 

The third database falls under a regression database and compiles 1,030 data points taken from 214 

tests that determined compressive strength (f'c) of high-performance concrete (HPC) as a 215 

function of: 1) Cement, C, 2) Blast Furnace Slag, B, 3) Fly Ash, F, 4) Water, W, 5) 216 

Superplasticizer, S, 6) Coarse Aggregate, CA, 7) Fine Aggregate, FA, and 8) Age, A. This 217 

database was published by Yeh [57] and has been extensively used in ML studies. Figure 4 and 218 

Table 5 show the distribution of all features comprising this database. The outcome of the 219 

correlation matrix shows the highest positive correlation to be between cement and compressive 220 

strength, followed by age and compressive strength, and flay ash and superplasticizer. A negative 221 

correlation exists between water and superplasticizer and water and fine aggregates.   222 

223 

224 

 225 
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 226 

Fig. 4 Frequency of identified features of concrete mix designs in the compiled database 227 

 228 

Table 5 Statistics on collected database 229 

Section Features C B F W S CA FA A f'c  

Compressive 

strength of 

HPC 

Min 102.0 0.0 0.0 121.8 0.0 801.0 594.0 1.0 2.3 

Max 540.0 359.4 200.1 247.0 32.2 1145.0 992.6 365.0 82.6 

Average 281.2 73.9 54.2 181.6 6.2 972.9 773.6 45.7 35.8 

Standard 

deviation 
104.5 86.3 64.0 21.4 6.0 77.8 80.2 63.2 16.7 

Median 0.5 0.8 0.5 0.1 0.9 0.0 -0.3 3.3 0.4 

Skewness 102.0 0.0 0.0 121.8 0.0 801.0 594.0 1.0 2.3 

           

Parameter  C B F W S CA FA A f'c  

C 1.000         

B -0.275 1.000        

F -0.397 -0.324 1.000       

W -0.082 0.107 -0.257 1.000      

S 0.093 0.043 0.377 -0.657 1.000     

CA -0.109 -0.284 -0.010 -0.182 -0.266 1.000    

FA -0.223 -0.282 0.079 -0.451 0.223 -0.179 1.000   

A 0.082 -0.044 -0.154 0.278 -0.193 -0.003 -0.156 1.000  

f'c 0.498 0.135 -0.106 -0.290 0.366 -0.165 -0.167 0.329 1.000 

 230 

Database on low cycle fatigue (StructuresNet 4: Hawileh & Abdalla database) 231 

The fourth database falls under a regression database and compiles real observation of around 60 232 

data points taken from strain-controlled low-cycle fatigue tests that were carried out on steel 233 

reinforcing bars under cyclic load with a frequency of 0.05 Hz. The tests determined the low-234 

cycle fatigue life by measuring the number of reversals (2Nf) to fatigue failure of steel 235 
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reinforcement bars of grade BS 460B and BS B500B. The database also contains generated data 236 

of energy dissipated in the first cycle, average cycles and total cycles of loading using numerical 237 

integration of area enclosed by the stress-strain hysteresis loops. These experimental and 238 

generated output parameters are function of: 1) Amplitudes of loading, A, and 2) strain ratio, R, 239 

for steel grade of BS460B, BS B500B. This database was generated by Abdalla et. al [63], 240 

Hawileh et. al [64] and has been used in ML studies to predict the fatigue life of steel reinforcing 241 

bars [48]. Figure 5 and Table 6 show the distribution of all features comprising this database. 242 

The outcome of the correlation matrix shows the highest positive correlation to be between 243 

fatigue life (2Nf) and the total energy (WfT), followed by R. A negative correlation exists between 244 

2Nf and energy dissipated in the first cycle (W1), energy dissipated in average cycles (WA). Other 245 

low-cycle fatigue of steel reinforcing bars databases were generated as a result of experimental 246 

tests [65,66]. A sensitivity analysis was carried out to identify the correlation between all 247 

features compiled in this database. The outcome of this analysis shows that all features seem to 248 

be of high importance. 249 

 250 

https://doi.org/10.1016/j.jobe.2021.102977
https://doi.org/10.1016/j.jobe.2021.102977


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.jobe.2021.102977  

 

Please cite this paper as:  

Naser M.Z., Kodur V.K.R., Thai H, Hawileh R, Abdalla J, Degtyarev V. (2021). “StructuresNet and FireNet: 

Benchmarking Databases and Machine Learning Algorithms in Structural and Fire Engineering Domains.” Journal 

of Building Engineering. https://doi.org/10.1016/j.jobe.2021.102977.  

15 
 

251 

 252 

Fig. 5 Frequency of identified features of concrete mix designs in the compiled database 253 

 254 

 255 

Table 6 Statistics on collected database  256 

Section Features A R W1 WA Wf,T  2Nf  

Compressive 

strength of 

HPC 

Min 0.0 -1.0 24.2 11.7 569.8 9.6 

Max 0.1 0.0 140.6 122.4 2583.4 440.0 

Average 0.0 -0.6 72.9 55.2 1324.9 75.9 

Standard 

deviation 
0.0 -0.6 30.4 27.8 482.7 75.7 

Median 0.0 0.4 0.6 0.6 0.6 2.6 

Skewness 0.4 0.3 24.2 11.7 569.8 9.6 

    

Parameter A R W1 WA Wf,T  2Nf  

A 1.000      

R -0.511 1.000     

Wp1 0.964 -0.344 1.000    

ΔWp,avg 0.964 -0.561 0.958 1.000   

WfT -0.826 0.691 -0.763 -0.869 1.000  
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2Nf -0.699 0.566 -0.638 -0.716 0.863 1.000 

 257 

Database on shear strength of reinforced concrete (RC) beams and FRP-strengthened RC beams 258 

(StructuresNet 5: Abdalla et al. database) 259 

A comprehensive database that covers two types of reinforced concrete beams strengthened in 260 

shear with steel stirrups [55] and with externally-bonded carbon fiber reinforced polymer sheets 261 

[67]. The two databases collected 290 notable test results from several experimental programs to 262 

measure the shear strength of RC beams. These regression databases were used to predict the 263 

shear strength of RC beams using different ML techniques.  264 

The first database documents geometric features in terms of: 1) beam width, b, 2) beam effective 265 

depth, d, 3) span-to-depth ratio, a/d, 4) shear reinforcement ratio, ρv, 5) concrete compressive 266 

strength, fc, 6) flexural reinforcement ratio, ρw and 7) shear strength, Vn.. A graphical distribution 267 

of all features in this database is plotted in Fig. 6 and Table 7 summarizes the main attributes of 268 

the collected database in terms of material and geometric features. The second database 269 

documents geometric features in terms of: 1) beam width, bw, 2) beam effective depth, deff, 3) 270 

beam span, L, 4) span-to-depth ratio, a/d, 5) concrete compressive strength, fc, 6) steel yield 271 

strength of stirrup, fy, 7) shear reinforcement per length, Av/S, 8) steel yield strength of 272 

longitudinal reinforcement, fy, 9) area of longitudinal reinforcement, Ast, 10) thickness of the 273 

fiber, tf, 11) width of the fiber, Bf, 12) height of the fiber, Hf, 13) width of the fiber over the 274 

spacing ratio, Wf/Sf, 14) stress in the fiber, ff, 15) modulus of elasticity of the fiber, Ef and 16) 275 

shear strength of the beam, Vf. A graphical distribution of all features in this database is plotted 276 

in Fig. 7 and Table 8 summarizes main attributes of the collected database in terms of material 277 

and geometric features. The outcome of the correlation matrix shows the highest positive 278 

correlation to be between the shear strength (Vn) and beam width (b) and between the shear 279 

strength (Vn) and beam depth (d). A negative correlation exists between shear strength (Vn) and 280 

span-to-depth ratio (a/d) and shear strength (Vn) and shear reinforcement ratio (ρv). 281 

Sensitivity analyses were carried out to identify the correlation between all features compiled in 282 

these databases. The outcome of these analyses shows that all features, deff, Av/S, ff, Hf, and Ef are 283 

of the highest importance. 284 
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285 

 286 

Fig. 6 Frequency of identified features of selected RC columns in the compiled database 287 

Table 7 Statistics on collected database for RC beams 288 

Section Features b (mm) d (mm) a/d ρv fc ρ Vn 

Shear strength 

of RC beams 

Min 76.2 95.0 2.0 0.0 15.3 0.2 7.3 

Max 200.0 374.0 11.6 1.9 73.6 5.0 330.9 

Average 111.5 176.6 3.5 0.3 41.3 2.2 47.5 

Standard 

deviation 
34.3 72.4 1.4 0.4 13.3 1.2 49.3 

Median 0.6 1.3 2.2 2.0 0.9 0.6 3.1 

Skewness 76.2 95.0 2.0 0.0 15.3 0.2 7.3 

         

Parameter b d a/d ρv fc ρw Vn 

b 1.000       

d 0.634 1.000      

a/d -0.165 -0.223 1.000     

ρv -0.501 -0.401 -0.070 1.000    

fc 0.016 -0.080 0.078 0.040 1.000   

ρw -0.309 -0.171 0.111 0.295 0.254 1.000  

Vn 0.527 0.506 -0.326 -0.191 0.181 0.353 1.000 
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289 

290 

291 

 292 

Fig. 7 Frequency of identified features of selected RC columns in the compiled database 293 
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Table 8 Statistics on collected database for FRP-strengthened RC beams 295 

 
bw 

(mm) 

deff 

(mm) 
L (m) a/d 

fc 

(MPa) 

fy,s 

(MPa) 

Av/S 

(mm2/mm) 

fy,L 

(MPa) 
Ast (mm2) 

tf 

(mm) 

Bf 

(mm) 
Hf (mm) Wf/Sf 

ff 

(MPa) 

Ef 

(MPa) 
Vf (kN) 

Minimum 75.0 118.0 0.5 1.0 13.3 0.0 0.0 391.0 0.0 0.0 0.0 25.0 0.1 160.0 5.8 10.0 

Maximum 250.0 425.0 4.5 6.0 61.0 645.0 1.6 759.0 375405.9 2.1 250.0 450.0 1.0 4361.0 390.0 91.0 

Average 145.5 263.5 2.2 2.7 35.9 236.4 0.3 473.3 45958.4 0.3 104.7 262.9 0.8 2940.9 198.1 33.4 

Standard 

deviation 
41.9 84.7 1.0 0.8 10.3 222.8 0.4 65.6 66745.8 0.4 68.6 89.3 0.3 1223.2 92.8 17.9 

Skewness 0.8 -0.2 0.8 1.3 0.4 0.1 1.4 1.5 1.7 2.8 -0.4 -0.6 -0.8 -1.4 -0.6 1.0 

                 

Parameter bw deff L a/d fc fy,s Av/S fy,L Ast tf Bf Hf Wf/Sf ff Ef Vf 

bw 1.000                
deff 0.241 1.000               
L -0.207 0.538 1.000              

a/d -0.150 -0.131 0.108 1.000             
fc 0.050 -0.059 -0.215 -0.076 1.000            
fy,s -0.174 0.141 0.108 -0.032 -0.025 1.000           

Av/S -0.239 -0.031 0.069 -0.006 -0.034 0.657 1.000          
fy,L -0.056 0.185 -0.089 0.117 0.127 0.005 -0.107 1.000         
Ast -0.196 -0.011 0.154 0.114 -0.076 0.723 0.882 -0.031 1.000        
tf -0.070 -0.301 -0.135 -0.047 0.151 0.041 0.075 -0.072 0.051 1.000       
Bf 0.107 0.148 0.106 0.178 0.119 0.100 0.101 0.122 0.134 -0.186 1.000      
Hf 0.258 0.857 0.357 -0.185 0.161 0.138 -0.149 0.199 -0.107 -0.376 0.108 1.000     

Wf/Sf -0.244 -0.189 0.343 0.218 -0.267 0.245 0.194 -0.112 0.299 -0.087 0.086 -0.290 1.000    
ff 0.179 0.351 0.281 -0.002 -0.187 -0.106 -0.216 0.032 -0.137 -0.521 0.168 0.490 -0.112 1.000   
Ef 0.239 0.359 0.206 0.017 -0.161 -0.095 -0.257 0.174 -0.144 -0.471 0.221 0.434 -0.132 0.819 1.000  
Vf 0.311 0.224 -0.023 -0.039 0.146 -0.155 -0.061 0.178 -0.152 -0.037 0.297 0.340 -0.260 0.189 0.128 1.000 

 296 
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Database on fire resistance of reinforced concrete columns (FireNet: Naser & Kodur database) 301 

The sixth database falls under a classification database and compiles real observations taken 302 

from over 140 fire resistance tests (including spalling phenomenon) and 169 FE simulations on 303 

reinforced concrete columns [68–81], and was compiled in [53]. This database contains 304 

information on binary incidents of fire-induced spalling (i.e., column spalled/does not spall), 305 

multi-class classification on fire rating of columns (e.g., in an hourly basis), and a regression-306 

based data (i.e., fire resistance duration). The identified features in the database include: 1) 307 

column width, W, 2) steel reinforcement ratio, r, 3) column length, L, 4) concrete compressive 308 

strength, fc, 5) steel yield strength, fy, 6) restraint conditions, K (fixed-fixed, fixed-pinned, and 309 

pinned-pinned), 7) concrete cover to reinforcement, C, 8) eccentricity in applied loading in two 310 

axes (ex and ey), 9) the magnitude of applied loading, P, and 10) fire failure time, FR.  311 

Figure 8 and Table 9 present additional details into the range of each of the selected features. 312 

Similar to the other databases, this database also covers a practical range of columns often used 313 

in the construction industry. For example, all columns are of a square cross-section with a 314 

minimum and maximum width between 203 mm and 601 mm. The steel reinforcement ratio 315 

ranges between 0.9-4.4% and a length of 2.1-5.7 m. The range of yield strength of steel 316 

reinforcement and compressive strength of concrete filling is from 354.0 MPa to 591.0 MPa, and 317 

from 24.0 MPa to 138.0 MPa, respectively. The used concrete cover spans 25.0-64.0 mm and 318 

eccentric between 0 and 150 mm. finally, the applied loading ranges between 0.0-5373.0 kN.  319 

A sensitivity analysis was carried out to identify the correlation between all features compiled in 320 

this database. The outcome of this analysis shows a primarily weak correlation between the 321 

features and fire resistance except for the case of boundary conditions which displayed a medium 322 

negative correlation, a positive correlation attained by the concrete cover. In addition, a few 323 

interesting observations can also be made from this correlation analysis. For example, a high 324 

positive correlation appears to be between compressive strength and applied loading, and a 325 

medium correlation arises between column width and loading level.  326 
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Fig. 8 Frequency of identified features of selected RC columns in the compiled database 328 

 329 

https://doi.org/10.1016/j.jobe.2021.102977
https://doi.org/10.1016/j.jobe.2021.102977


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.jobe.2021.102977  

 

Please cite this paper as:  

Naser M.Z., Kodur V.K.R., Thai H, Hawileh R, Abdalla J, Degtyarev V. (2021). “StructuresNet and FireNet: 

Benchmarking Databases and Machine Learning Algorithms in Structural and Fire Engineering Domains.” Journal 

of Building Engineering. https://doi.org/10.1016/j.jobe.2021.102977.  

23 
 

Table 9 Statistics on collected database  330 

  W (mm) r (%) L (m) fc (MPa) fy (MPa) K C (mm) ex (mm) 
ey 

(mm) 
P (kN) 

FR 

(min) 

F
ir

e 
re

si
st

an
ce

 

an
al

y
si

s 

Minimum 200.0 0.9 2.1 24.0 354.0 - 23.0 0.0 0.0 0.0 22.0 

Maximum 610.0 4.4 5.8 138.0 591.0 - 64.0 150.0 75.0 5373.0 636.0 

Average 324.3 2.1 4.0 49.3 449.4 - 40.2 15.8 2.0 1204.8 161.0 

Standard 

deviation 
99.2 0.6 0.7 28.1 60.1 - 8.7 29.7 10.1 1031.6 97.6 

Skewness 1.9 0.6 0.3 1.4 0.7 - -0.6 2.9 5.3 1.7 0.9 

S
p

al
li

n
g

 

A
n

al
y

si
s 

Minimum 152.0 0.7 - 16.0 - - 25.0 - - 0.0 - 

Maximum 514.0 4.9 - 126.5 - - 64.0 - - 5373.0 - 

Average 325.3 2.5 - 54.3 - - 37.6 - - 1556.9 - 

Standard 

deviation 
69.4 0.8 - 27.9 - - 4.4 - - 1109.1 - 

Skewness 0.7 1.0 - 1.1 - - 0.6 - - 1.4 - 

             

Parameter W r L fc fy K C ex ey P FR 

W 1.000           

r -0.120 1.000          

L -0.172 0.256 1.000         

fc 
0.244 0.055 

-

0.110 1.000        

fy 
-0.250 -0.346 

-

0.078 -0.478 1.000       

K 0.022 -0.283 0.326 -0.079 0.169 1.000      

C 
0.319 0.312 

-

0.224 0.279 -0.641 

-

0.362 1.000     

ex -0.088 0.046 0.356 -0.230 0.154 0.278 -0.257 1.000    

ey 
0.156 -0.047 

-

0.001 -0.136 -0.144 0.145 0.160 0.181 1.000   

P 
0.670 0.121 

-

0.206 0.559 -0.384 

-

0.214 0.283 -0.213 0.035 1.000  

FR 
0.381 0.081 

-

0.440 0.221 -0.277 

-

0.604 0.558 -0.370 -0.043 0.365 1.000 

Selected Machine Learning Algorithms   331 

As mentioned earlier, the primary goal of this work is to benchmark commonly used ML 332 

algorithms (in their default settings) against structural and fire engineering problems. In this 333 

pursuit, a review of recent works [82–84] identified the following six algorithms as the most 334 

commonly used algorithms in structural and fire engineering domains: Decision Trees (DT), 335 

Random Forest (RF), Extreme Gradient Boosted Trees (ExGBT), Light Gradient Boosted Trees 336 

(LGBT), TensorFlow Deep Learning (TFDL), and Keras Deep Residual Neural Network (KDP), 337 

and these are briefly discussed herein. Most of these algorithms can be used in regression, and 338 

classification problems which are expected to cover the majority of structural and fire 339 

engineering problems.  340 
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Decision Trees (DT) 341 

The DT algorithm has the capability to generate a schematic representation of all possible 342 

decisions and consequences, which can be visualized by dividing the database into branch-like 343 

arrangements [85]. In general, a DT is generated and starts at a root node and then grows into 344 

tree-like components (i.e., leaves etc.). The developed algorithm was obtained in its default 345 

setting from Scikit platform [86]. This algorithm has a maximum depth of “none”, minimum leaf 346 

size and maximum size for split equals to 1 and “none”, respectively [87,88]. This DT algorithm 347 

utilized Gini impurity to facilitate the quality of a split and processing of datapoints. For 348 

example, for a node t, the Gini index g(t) is defined as [89]: 349 

 350 

𝑔(𝑡) = ∑ 𝑝(𝑗|𝑡)𝑝(𝑖|𝑡)𝑗≠𝑖          (1) 351 

  352 

where i and j are target field categories, and p is for probability. 353 

 354 

𝑝(𝑗, 𝑡) =
𝑝(𝑗,𝑡)

𝑝(𝑡)
;𝑝(𝑗, 𝑡) =

𝜋(𝑗)𝑁𝑗(𝑡)

𝑁𝑗
; and 𝑝(𝑡) = ∑ 𝑝(𝑗,𝑡)𝑗       (2) 355 

 356 

Random Forest (RF) 357 

This algorithm integrates multiple DTs via ensemble learning to form a more powerful 358 

prediction model; hence, a forest of trees [90]. In RF, all individual DTs reach a predictive 359 

outcome. Then, this outcome is processed depending on the type of problem (i.e., regression vs. 360 

classification). For a regression problem, the average result of all trees is calculated to arrive at a 361 

final outcome. On the other hand, in a classification problem, the majority voting method is used 362 

to consolidate the final outcome. A typical formulation of RF is presented herein: 363 

 364 

𝑌 =
1

𝐽
∑ 𝐶𝑗,𝑓𝑢𝑙𝑙

𝐽
𝑗=1 + ∑ (

1

𝐽
∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑗(𝑥, 𝑘)𝐽

𝑗=1 )𝐾
𝑘=1       (3) 365 

 366 

where, J is the number of trees in the forest, k represents a feature in the observation, K is 367 

the total number of features, Cfull is the average of the entire dataset (initial node). The used 368 

algorithm can be found herein [91] and has the following default settings; number of trees = 500, 369 

Gini impurity to facilitate quality of a split, a maximum depth of “none”, minimum leaf size, and 370 

maximum size for split equals to 5 and “none”, respectively. 371 

 372 

Extreme Gradient Boosted Trees (ExGBT) 373 

The ExGBT algorithm is an improved form of the Adaboost algorithm [92]. ExGBT re-samples 374 

the collected data points into a tree-like format, where each tree sees a bootstrap sample of the 375 

database in each iteration. ExGBT fits each successive tree to previous residual errors obtained 376 

from previous trees; thereby focusing each iteration on the observations that are most difficult to 377 

predict, which becomes a good practice for the algorithm to yield high prediction accuracy [93].  378 

The code of the used ExGBT can be found online at [94,95]. This algorithm incorporates default 379 

https://doi.org/10.1016/j.jobe.2021.102977
https://doi.org/10.1016/j.jobe.2021.102977


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.jobe.2021.102977  

 

Please cite this paper as:  

Naser M.Z., Kodur V.K.R., Thai H, Hawileh R, Abdalla J, Degtyarev V. (2021). “StructuresNet and FireNet: 

Benchmarking Databases and Machine Learning Algorithms in Structural and Fire Engineering Domains.” Journal 

of Building Engineering. https://doi.org/10.1016/j.jobe.2021.102977.  

25 
 

settings of a learning rate of 0.1, maximum tree depth of 3, subsample feature of 1.0, and 100 for 380 

the number of boosting stages. 381 

 382 

Light Gradient Boosted Trees (LGBT) 383 

Light gradient boosted trees is a light algorithm that requires little processing and is a 384 

generalization of their parent algorithm (Adaboost) [96]. This algorithm is very much similar to 385 

the RF algorithm with the main exception is that it does not fit the trees in parallel but rather it 386 

fits the trees in a successive manner and fits the residual errors from all the previous trees 387 

combined. This is advantageous, as the model focuses each iteration on the examples that are 388 

most difficult to predict. The used algorithm can be found at [97] with the following default 389 

settings: learning rate = 0.02, maximum depth = “none”, number of boosting stages = 500 etc.  390 

TensorFlow Deep Learning (TFDL) 391 

This is a neural network-based model that uses Deep Learning as the primary method of analysis. 392 

A TFDL algorithm mimics the topology of the brain and comprises of a minimum of three 393 

layers. The first layer receives the database and forward it to the second set of layer(s). These 394 

layers use a nonlinear activation function which enables the algorithm of generating an 395 

approximation form that permits gradient-based optimization (see Eqs. 4 and 5). The used 396 

algorithm in its default settings (neurons in each layer = 55, number of training examples = 128, 397 

optimizer = Adam, learning rate = 0.001, early stopping window = 10 etc.) can be found at [98]. 398 

netj = ∑ Iniwij
𝑛
𝑖=1 + bj          (4) 399 

 400 

Y = f(netj)               (5) 401 

 402 

where, Ini and bj are the ith input signal and the bias value of jth neuron, respectively, 403 

wij is the connecting weight between ith input signal and jth neuron, and f is an activation 404 

function such as Relu. 405 

 406 

Keras Deep Residual Neural Network (KDP) 407 

Keras is a high-level library for developing neural networks [99]. In a residual network, a direct 408 

connection exists linking data points to the outputs. Such a connection smoothens out the loss 409 

function and enables better optimization of the network. In the used KDP, default settings of a 410 

learning rate of 0.03 was used, along with a Prelu activation function, two layers containing 512 411 

neurons. KDP can be readily found at [100]. 412 

Selected Performance Metrics    413 

The adequacy of ML models in predicting engineering phenomena is often established through a 414 

comparison against performance metrics. Such metrics are defined as logical and/or 415 

mathematical constructs intended to measure the closeness of test measurements to that predicted 416 

by a ML model [101–103]. There exists a large body of literature covering a variety of metrics 417 
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[104,105]. In this work, a focus is to provide the reader with a set of metrics that can be suitable 418 

for the majority of engineering applications. These metrics cover two domains, regression, and 419 

classification, as listed below.  420 

In this study, four regression metrics and four classification metrics are presented (see Table 10). 421 

These metrics are commonly used in structural and fire engineering literature [32,106–108]. On 422 

the regression front, the metrics include; Mean Absolute Error (MAE), Mean Absolute 423 

Percentage Error (MAPE), Root Mean Squared Error (RMSE), and Coefficient of Determination 424 

(R2). Both MAE and MAPE measure the difference between continuous variables in terms of the 425 

same scale or as a percentage, respectively. MAPE tends to suffer when applied to predictions 426 

with zero values. On the other hand, the RMSE describes the errors in a scale-independent 427 

fashion, where lower values indicating favorable prediction capability. One should note that 428 

RMSE is sensitive to outliers and to the fraction of the data used. R2 is also used herein, and this 429 

metric is the square of the coefficient of correlation (r); which measures the degree of association 430 

between observed and predicted values with r closer to +1 indicates a positive and perfect linear 431 

relationship. Higher and positive values of R2 indicate strong and positive prediction capability.  432 

 433 

On the classification front, four metrics are also presented, including; Accuracy (ACC), 434 

Balanced accuracy (BACC), Area under the ROC curve (AUC), and Log Loss Error (LLE). 435 

Unlike their regression counterparts, these metrics are used to evaluate the prediction capability 436 

of a ML algorithm in terms of categorial outputs of binary (i.e., spalling occurs/spalling does not 437 

occur), or multi-output classes (e.g., 60 minutes fire rating/120 min fire rating/180 minutes fire 438 

ratings etc.). For instance, ACC evaluates the ratio of the number of correct predictions to the 439 

total number of samples used in the analysis, and as such, assumes equal penalty for errors. 440 

BACC is useful for databases with imbalanced data and multi-classes; where on class has 441 

relatively larger occurrences than other classes. This metric is a normalized version of ACC and 442 

calculates accuracy on a per-class basis, then averaging the per-class accuracies. The AUC 443 

measures the area under the Receiver Operating Characteristic (ROC) curve; with a higher area 444 

(close to 1.0) reflecting an accurate prediction capability. The Log Loss error measures the 445 

performance of a classification model whose output is a probability value between 0 and 1; 446 

thereby, a prefect model would have a log loss of 0.0.  447 

 448 

The above discussion shows that while all selected metrics have been used in engineering and 449 

computer science benchmarking, they still tend to have some limitations, and hence it is 450 

advisable to use a collection of metrics when evaluating ML algorithms in problems in our 451 

domains. Comparing model performance across multi-metrics is seen of merit (as opposed a sole 452 

metric) since this practice brings in a whole view to the performance of ML models. The ML user 453 

is also advised as to apply due diligence in selecting proper metrics for the problem on hand. 454 

For example, the use of regression-based metrics may not yield a proper exploration of 455 

classification-based problems and vice versa. The above discussion covers key ideas behind 456 

some of the most commonly used metrics and a more in-depth discussion on the provided 457 
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metrics, along with others such as Mean Squared Error (MSE), Reference index (RI), Confusion 458 

Matrix (CM), and Cohen’s kappa (CK) etc., can be found elsewhere [104,105].  459 
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Table 10 List of common performance metrics.  460 

Problem Name Metric Remarks 

R
eg

re
ss

io
n

 

Mean Absolute Error (MAE) Measures the difference between two continuous variables, as 

𝑀𝐴𝐸 =  
∑ |𝐸𝑖|

𝑛
𝑖=1

𝑛
 

 

• Uses a similar scale to input data [109]. 

• Can be used to compare data points of different scales. 

Mean Absolute Percentage 

Error (MAPE) 

Measures the extent of error in percentage terms, as 

𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑|𝐸𝑖|/|𝐴𝑖|

𝑛

𝑖=1

 

• Cannot be used if there are actual zero values. 

• Non-symmetrical (adversely affected if a predicted value is larger or smaller than 

the corresponding actual value) [110]. 

Root Mean Squared Error 

(RMSE) 

Measures the square root of the average of squared errors 

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

• Scale dependent. 

• A lower value for RMSE is favorable. 

• Sensitive to outliers. 

• Highly dependent on fraction of data used (low reliability) [111]. 

Coefficient of Determination 

(R2) 

Measures the goodness of fit of a mode 

𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 

 

• R2 values close to 1.0 indicate strong correlation. 

• The square of correlation. 

 

C
la

ss
if

ic
a
ti

o
n

 

Accuracy (ACC) Evaluates the ratio of number of correct predictions to the total number of samples. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

• Presents performance at a single class threshold only. 

• Assumes equal cost for errors [39]. 

 

Balanced accuracy (BACC) 

𝐵𝐴𝐶𝐶 =
1

𝑀
∑

𝑟𝑚

𝑛𝑚

𝑀

𝑚=1

 

where, M = number of classes, nm= data size belongs to class m, rm=number of data 

accurately predicted belonging to class m. 

• Balanced accuracy is a metric that one can use when evaluating how good a binary 

or multi-classifier is.  

• Useful for imbalanced and multi-classification databases. 

Area under the ROC curve 

(AUC) 

 

Measures the two-dimensional area underneath the entire ROC curve. 

𝐴𝑈𝐶= ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 

 

• Not dependent on a single class threshold. 

• Associated with increased training times. 

 

Log Loss Error (LLE) 

 

Measures the where the prediction input is a probability value. 

𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

, 

where, M:  number of classes, c: class label, y: binary indicator (0 or 1) if c is the 

correct classification for a given observation. 

• Penalizes for being too confident in wrong prediction. 

• Has probability between zero and 1. 

• A log loss of zero indicates a perfect model. 

 

A: actual measurements, P: predictions, n: number of data points, E = A-P, P (denotes number of real positives), N (denotes number of real negatives), TP (denotes true positives), TN (denotes true negatives), FP 461 

(denotes false positives), and FN (denotes false negatives).  462 
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Benchmarking of selected algorithms  463 

This section details the benchmarking of all selected algorithms at the six compiled databases. 464 

As mentioned above, all algorithms were used given their default settings to allow a raw 465 

evaluation of their performance against structural and fire engineering data/problems. Table 11 466 

lists the outcome of the carried-out benchmark analysis in terms of performance metrics under 467 

training, validation and testing regimes. All analyses adopted a five-fold cross-validation 468 

procedure. The best performing algorithms are shown in bold in Table 11. For simplicity and to 469 

negate the notion of chasing accuracy as it is beyond the objective of this work, all results were 470 

rounded for two decimal places.   471 

As one can see and as expected, not a single algorithm was found to be dominant in all of the 472 

carried-out examinations, nor in all three testing regimes. This highlights the need for adopting 473 

multiple algorithm search, and multiple performance metrics in a given ML analysis. One should 474 

still note that of all algorithms, ExGBT and LGBT seem to outperform all other algorithms, with 475 

ExGBT leading. For instance, ExGBT managed to score the best metrics in Database 1, 3, 4 and 476 

5, while LGBT performed comfortably well in Database 2. On the contrary, the DT algorithm 477 

performed the poorest of all algorithms in the majority of the tested databases, followed by RF 478 

and TFDL. 479 

A note to remember is that the outcome of this analysis only reflects upon the selected six 480 

algorithms and does not imply that other algorithms may not perform better than those used 481 

herein. The same also goes for the selected performance metrics. As mentioned earlier, the 482 

notion of this work is not to start an “accuracy chase”, especially since, as the conducted analysis 483 

shows, accurateness is not only a complex metric to realize and achieve but is also subjective and 484 

requires a deep dive into multi-metrics and domains.  485 
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Table 11 Outcome of benchmark analysis  486 

D
a

ta
b

a
se

 3
 

(R
eg

re
ss

io
n

) 
 

R2 0.88 0.83 0.82 0.89 0.88 0.89 0.93 0.92 0.94 0.69 0.64 0.67 0.48 0.46 0.39 0.88 0.89 0.90 

MAE 4.44 5.05 4.70 4.18 4.18 4.03 3.10 3.11 2.66 7.56 8.056 7.65 10.57 10.73 10.82 3.85 3.77 3.43 

MAPE 15.83 17.85 15.01 15.27 14.94 13.64 10.90 10.59 8.91 35.34 34.42 29.36 29.93 31.97 30.86 12.69 12.14 11.46 

RMSE 5.97 6.81 6.67 5.46 5.70 5.25 4.23 4.59 3.7 9.42 10.08 9.08 12.37 12.39 12.43 5.88 5.64 4.98 

                    

D
a

ta
b

a
se

4
 

(R
eg

re
ss

io
n

) R2 -1.00 0.42 0.69 0.56 0.72 0.88 0.59 0.78 0.90 -1.00 0.22 0.62 -3.02 -0.54 0.58 -0.96 0.27 0.71 

MAE 24.50 20.16 24.28 15.17 18.27 17.84 11.05 18.15 14.02 28.01 26.49 31.21 54.31 42.92 36.78 25.60 27.40 22.88 

MAPE 41.93 24.26 4099 48.65 27.32 35.19 26.29 22.05 28.04 237.59 97.59 133.92 74.33 37.63 49.84 54.81 37.76 38.44 

RMSE 44.29 37.29 37.33 20.47 34.78 22.87 19.63 30.10 21.32 44.67 48.55 41.56 68.29 63.18 43.76 43.15 46.87 36.25 

                   

D
a

ta
b

a
se

5
 

(R
eg

re
ss

io
n

) R2 0.49 0.72 0.47 0.75 0.80 0.35 0.96 0.95 0.91 0.98 0.96 0.80 0.81 0.80 0.54 0.98 0.95 0.94 

MAE 17.39 13.90 12.72 13.58 12.57 13.88 5.75 5.70 5.71 3.13 5.11 7.18 12.18 13.63 12.76 3.46 5.13 4.44 

MAPE 66.19 37.72 37.32 47.79 34.72 51.72 18..64 14.36 19.16 8.06 11.67 27.36 36.32 40.00 43.79 7.69 10.61 15.90 

RMSE 28.70 23.32 24.09 20.42 20.39 26.60 7.62 9.14 9.93 4.83 9.23 14.78 17.53 19.46 22.39 5.28 9,97 7.97 

                    

D
a

ta
b

a
se

5
 

(R
eg

re
ss

io
n

) R2 -0.1 0.01 0.12 0.32 0.26 0.06 0.50 0.28 0.29 0.37 0.22 0.21 -2.99 -2.17 -2.00 0.34 0.28 0.31 

MAE 12.32 13.19 14.64 10.18 11.68 13.97 8.48 11.79 12.13 9.29 11.79 12.69 25.81 25.49 28.26 9.61 12.11 12.10 

MAPE 50.48 50.16 71.03 40.99 45.18 67.62 34.50 44.11 54.49 39.74 44.05 63.27 84.95 75.26 85.53 38.12 45.25 62.30 

RMSE 14.96 17.02 19.71 11.73 14.65 17.96 10.11 1438 15.63 11.32 14.96 16.47 28.53 30.14 32.57 11.67 14.44 15.39 

                    

D
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ta
b

a
se

 6
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i-
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ss
 

C
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a
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o

n
) AUC 0.78 00.74 0.82 0.82 0.80 0.84 0.83 0.80 0.87 0.81 0.78 0.80 0.81 0.79 0.83 0.81 0.76 0.80 

Accuracy 0.30 0.42 0.67 0.52 0.46 0.57 0.47 0.42 0.71 0.47 0.43 0.42 0.43 0.5 0.42 0.43 0.46 0.46 

Balanced 

Accuracy 
0.36 0.38 0.62 0.49 0.44 0.51 0.48 0.43 0.67 0.45 0.42 0.42 0.42 0.48 0.37 0.42 0.44 0.42 

Log Loss 4.01 4.04 4.38 1.16 1.20 1.09 1.15 1.20 0.97 1.15 1.24 1.17 1.19 1.31 1.18 1.21 1.48 1.43 

D
a

ta
b

a
se

 

6
 (

B
in

a
ry

 

C
la
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a
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o

n
) 

AUC 0.69 0.65 0.78 0.76 0.82 0.86 0.77 0.85 0.87 0.79 0.77 0.85 0.76 0.73 0.74 0.76 0.80 0.76 

Accuracy 0.67 0.70 0.76 0.77 0.76 0.84 0.78 0.79 0.84 0.77 0.78 0.81 0.74 0.76 0.79 0.78 0.78 0.79 

Balanced - - - - - - - - - - - - - - - - - - 

 Metric 
DT RF ExGBT LGBT TFDL KDP 

Training  Validation  Testing  Training  Validation  Testing  Training  Validation  Testing  Training  Validation  Testing  Training  Validation  Testing  Training  Validation  Testing  

D
a

ta
b

a
se

 1
 

(R
eg

re
ss

io
n

) 
 

R2 0.96 0.96 0.87 0.82 0.94 0.83 0.99 0.99 0.92 0.91 0.96 0.99 0.57 0.56 0.39 0.86 0.93 0.88 

MAE 291.48 280.57 437.52 331.19 331.41 425.11 115.18 132.13 235.20 197.91 161.74 116.06 835.06 926.84 881.29 369.90 298.70 366.28 

MAPE 12.69 13.27 13.31 12.99 15.77 12.77 6.29 6.95 6.73 7.00 6.72 5.65 29.58 36.52 26.26 11.99 11.37 10.50 

RMSE 707.966 691.71 1665.5 1005.55 881.29 1929.42 260.81 309.48 1293.29 1091.33 646.86 254.28 2433.55 2493.91 3654.07 1374.04 928.01 1608.60 

                    

D
a

ta
b

a
se

 2
 

(R
eg

re
ss

io
n

) R2 0.95 0.95 0.94 0.92 0.93 0.94 0.99 0.99 0.99 0.99 0.91 0.99 0.33 0.73 0.81 0.99 0.93 0.99 

MAE 3966.50 3964.98 3699.48 5399.59 4838.66 4321.92 1844.14 1695.84 1625.74 1528.76 1519.08 1552.55 8326.67 9069.17 7703.48 2242.65 2200.97 1977.25 

MAPE 12.09 11.78 11.50 20.27 19.16 18.67 5.25 5.0 4.87 4.47 4.60 4.48 26.08 28.38 26.75 6.55 6.63 6.57 

RMSE 8688.51 8803.70 8861.78 11547.00 9965.00 922.20 4165.88 3727.08 4012.00 3492.27 3489.72 3756.76 16313.00 17212.00 16263.00 4799.37 4770.15 4235.65 
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Accuracy 

Log Loss 0.61 0.88 0.52 0.60 0.51 0.43 0.64 0.48 0.48 0.52 0.52 0.48 0.54 0.56 0.58 0.65 0.55 0.71 

D
a

ta
b

a
se

 6
 

(R
eg

re
ss

io
n

) 

R2 0.44 0.58 0.32 0.54 0.69 0.50 0.73 0.77 0.45 0.57 0.64 0.49 0.51 0.51 0.41 0.48 0.65 0.29 

MAE 45.15 43.20 45.93 41.00 36.54 34.42 30.76 30.51 33.26 39.21 40.36 38.72 41.18 46.47 50.01 41.79 37.70 42.88 

MAPE 27.15 32.15 32.92 27.13 27.21 29.19 20.16 22.42 21.53 28.54 30.55 34.20 30.04 37.93 44.42 28.01 26.57 28.92 

RMSE 67.63 60.25 91.1 61.47 50.80 77.43 47.29 43.86 81.38 59.49 56.10 78.27 63.33 64.66 84.37 64.81 54.78 92.30 

                    

Leaderboard 
Recurrence 0 1 0 1 2 3 24 22 17 10 9 9 0 2 0 1 2 8 

% 0 2 0 2 5.6 8.3 66.7 61.2 47 30.5 19.4 25 0 5.6 0 2 5.6 22 
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Future directions  487 

This benchmarking study alludes to the notion that intentional, or unintentional cherry-picking in 488 

a given ML analysis is likely; given that not all users are familiar with all different ML modeling 489 

techniques, nor there is a requirement to attempt to try to examine all possible ML techniques. In 490 

the majority of scenarios, and rightly so, a user may in fact favor algorithms that s/he familiar 491 

with over others. As such, properly benchmarking ML model is needed now noting how the use 492 

of ML into our domains is expected to continue to rise and hence works targeting benchmarking 493 

will set the foundation towards a reliable and safe integration of this new technology. Early 494 

attempts in this area will help overcome existing issues related to standardization and validation 495 

of FE models, among other methods [7,112]. In addition, future attempts will continue to 496 

overcome some of the current limitations of ML especially those with regard to limited number 497 

of data points, selection of tuning parameters, different coding languages, need for improved 498 

inference performance etc. [82,83]. 499 

One could argue that modeling (in general) may not be suited for technicians, like testing 500 

standards for materials, and hence a FE model should only be implemented by trained 501 

engineers. However, a trained engineer is also required to follow/adhere to a procedure. To 502 

ensure compatibility, such a procedure is to be unified, generally accepted, or standardized for 503 

repeatability and transparency. We, then, argue that the modeling, whether is to be deployed by 504 

technicians or engineers, also needs to follow a commonly accepted procedure. In a way, a move 505 

towards a unified procedure will facilitate both inclusivity and diversity into our domains. Such 506 

a procedure can start by benchmarking commonly used ML models as it is customary in the 507 

computer science domain [113–115]. The message of this work also aligns with that proposed by 508 

other researchers that focused on unifying FE modeling procedures [24–27].  509 

This paper focuses on benchmarking commonly available ML algorithms against structural and 510 

fire engineering phenomena by analyzing six notable databases that have been properly 511 

documented and examined in the open literature. As such, the primary goal of this paper is not to 512 

chase high accuracy scores but rather establishes a benchmark for the following ML models DT, 513 

RF, ExGBT, LGBT, TFDL, and KDP against structural and fire engineering problems. Similar to 514 

other works [116–119], we hope that StructuresNet and FireNet can accelerate the use of ML 515 

into the structural engineering and fire engineering domains. In the future to come, new works 516 

are encouraged to cross-check their ML models’ predictive power against findings from this 517 

benchmarking study. We expect finetuned upcoming ML models to achieve improved 518 

performance than what we displayed herein. Interested works are also invited to continue 519 

progress in this area as a mean to capitalize upon the attractiveness of ML.  520 

There are three sub-domains to benchmarking: 1) number and types of databases, 2) used 521 

performance metrics, and 3) repeatability of predictability [120,121]. This paper covers the first 522 

two sub-domain, and as such, work is needed to benchmark the latter by examining derivates of 523 

feature selection techniques, model tuning parameters (in terms of the learning rate, loss 524 

functions, activation functions, hyperparameter tuning etc.), use of optimizers, hybrid and 525 

ensemble modeling approaches. For example, Degtyarev [32] showed how finetuning some of 526 
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the noted parameters above can result in large improvements (whether in terms of shorter 527 

processing time, or attaining higher accuracy metrics). In addition, one must not forget 528 

benchmarking hardware or cloud services associated with ML modeling as well. Such 529 

benchmarking may lead to developing eco-friendly or green ML models that do not require 530 

intense energy resources to solve structural or fire engineering problems.  531 

Conclusions 532 

This paper presents a framework for developing, benchmarking, and validating commonly 533 

adopted supervised learning ML algorithms against databases compiled for structural and fire 534 

engineering problems. These presented datasets cover six domains, 1) elemental response of 535 

CFST circular CFST columns at ambient conditions, 2) shear response of CFS channels with 536 

slotted webs, 3) compressive strength of concrete, 4) fatigue life data, 5) shear strength of RC 537 

and FRP-strengthened beams and fire engineering; and 6) fire behavior of RC concrete columns 538 

in terms of spalling occurrence and fire resistance. In total, six algorithms were benchmarked 539 

including; Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosted Trees 540 

(ExGBT), Light Gradient Boosted Trees (LGBT), TensorFlow Deep Learning (TFDL), and 541 

Keras Deep Residual Neural Network (KDP). Holistically, the presented paper establishes the 542 

first step towards a unified framework that can be used to accelerate the adoption of ML into 543 

structural and fire engineering domains.  544 

The following list of inferences can also be drawn from the findings of this study: 545 

• All selected algorithms in their default settings seem to properly capture the structural 546 

and fire engineering phenomena examined herein (with satisfactory and varying levels of 547 

success). This implies that structural and fire engineers can adopt raw algorithms as is, as 548 

opposed to developing complex ML models or undergo painful programming exercises. 549 

This also implies that complications arising due to engineers’ historically limited 550 

knowledge on ML coding (given the lack of ML presentations into structural and fire 551 

engineering curriculum) can be easily overcome. 552 

• Of all algorithms showcased herein, both Extreme Gradient Boosted Trees (ExGBT), 553 

Light Gradient Boosted Trees (LGBT) seem to rank the highest on the carried-out tests. 554 

• As expected, out of all examined algorithms, not a single algorithm was found to be 555 

dominant in all of the carried-out examinations. This highlights the need for adopting 556 

multiple algorithm search and multiple performance metrics in a given ML analysis. 557 

• Benchmarking efforts are encouraged to continue to develop accepted databases and 558 

performance evaluations of ML algorithms since the integration of ML into our domains 559 

is on the horizon. Early efforts will not only ensure a smooth transition into automation 560 

within our historically slow-adapting fields but will also negate existing hurdles observed 561 

in attempting to unified FE simulation methods.  562 

Data Availability 563 

Some or all data, models, or code that support the findings of this study are available from the 564 

corresponding author upon reasonable request. All of the presented databases are hosted online 565 

on public repositories (and complete links to these databases are shown herein).  566 
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Links to databases: 567 

Database 1 [59]. Database 2 [122]. Database 3 [123]. Database 4 [63,64]. Database 5 [55,67]. 568 

Database 6 [54]. 569 
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