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Abstract 8 

This paper presents; mapping functions, a machine learning (ML) and simulation-free approach to 9 

enable physics-guided and data-driven derivation of expressions that describe engineering 10 

phenomena. In this approach, a series of ML models are first developed to examine a given 11 

phenomenon, and insights from their analysis, together with those obtained from physics 12 

principles, are then used to identify key features governing the noted phenomenon while satisfying 13 

the Law of Parsimony of Occam’s Razor. The identified features are subsequently explored via a 14 

search space to map the causality of the problem on hand into compact descriptive expressions 15 

which can be applied directly to examine such phenomenon, thereby negating the need for 16 

subsequent modeling. The proposed approach overcomes some limitations associated with 17 

traditional means of arriving at descriptive expressions as examined against structural and fire 18 

engineering problems. This approach offers an alternative method that is cognitive, instantaneous, 19 

and affordable.  20 

 21 

Keywords: Machine learning; Mapping functions; Feature selection; Surrogate modeling; 22 

Strucutral engineering, Fire engineering.  23 

Introduction 24 

Engineering problems are often tackled through physical tests, or numerical simulations. The 25 

primary goal of such examination is to arrive at insights that tie a cause(s) to an effect(s). 26 

Oftentimes, the outcome of the noted exercise is molded into a representation, or series of 27 

representations, that capture the mechanisms at which a phenomenon occurs or develops. In all 28 

cases, an experiment is conducted under a certain level of control to minimize noise and ensure 29 

reliable findings [1]. To maintain control, one parameter at a time is often varied to observe how 30 

a particular parameter influences the outcome of an experiment. The same procedure can also be 31 

undertaken through a numerical investigation. In such an exercise, a numerical model (say a finite 32 

element (FE) model) is first developed and then validated against a benchmark. A benchmark is 33 

likely to be of an analytical nature, an experimental nature (i.e., measurements taken during a test), 34 

or possibly through a comparison against previously developed numerical models [2]. 35 

Ultimately, a holistic analysis is applied to arrive at an understanding of the cause-and-effect 36 

governing the phenomenon on hand [3]. From an engineering perspective, this understanding is 37 

often converted into a function, formula, or design expression to convey simplicity. Arriving at 38 

such a function can be undertaken via a statistical or a mathematical approach wherein 39 

observations from tests or simulations are fitted into expressions that deliver our “understanding” 40 
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of the examined problem [4]. Such expressions come in handy as they: 1) convert a phenomenon 41 

into a meaningful set, 2) articulate the relations between critical parameters, as well as these 42 

parameters and the outcome/response observed during the noted investigation, 3) can be easily 43 

applied by various stakeholders, 4) can serve as a blueprint (e.g., can be extended) to parallel 44 

phenomena, and most of all 5) overcomes the need to carry out additional tests/simulations to 45 

analyze already established parameters/relations [5,6]. We must note that arriving at such 46 

expressions, while helpful to describe our understanding of a problem, is also confined by the 47 

space of parameters examined during tests or simulations. 48 

The procedure to develop a design expression also involves additional steps, such as those related 49 

to ensuring: 1) reliability, 2) generality, and 3) wide-acceptance of the proposed expression(s). 50 

Much of the aforenoted steps require further stipulation and passing of relevant requirements (i.e., 51 

cross-examination by independent authorities such as building code committees, etc.). However, 52 

these steps occur once an expression is deemed fit for usage, and in order to arrive at this step, an 53 

expression (or set of expressions) must first be founded.  54 

Devising a comprehensive experimental campaign is often complex as such campaigns are 55 

restricted by the availability of funds, facilities, time allocated for investigation, etc. As such, it is 56 

commonly accepted that a few tests are first undertaken – wherein such tests are read by sensor 57 

measurements – and then augmented with numerical models to extend the space of the 58 

experimental program. In some instances, researchers or building code committees may opt to 59 

combine findings from multiple test campaigns to arrive at design expressions [7,8]. These are 60 

primarily arrived at via rigorous statistical analysis [9,10]. Given the emphasis of engineering 61 

curricula upon such methods, engineers become naturally comfortable with statistical means of 62 

investigation.  63 

A deep dive into statistical methods reveals that these methods were designed to operate on data 64 

with a “relatively” small number of parameters. These methods draw inferences from a sample of 65 

population supplemented with a quantifiable measure of confidence that associates a discovered 66 

relationship to be, in fact, “true” – one that is unlikely to be due to noise. In a typical statistical 67 

analysis, a model with accompanying statistical distribution is adopted and applied to fit the 68 

parameters of interest to the outcome of a given phenomenon [11]. In the instance wherein the 69 

number of parameters grows, or the relationship between these parameters turns complex, or the 70 

quality of data does not satisfy predetermined conditions set by subject/human knowledge tied 71 

with statistical methods, such methods become less effective [12].  72 

With the rise of ML in parallel fields, ML can also be used to arrive at an “understanding” of 73 

phenomena [13,14]. Thus, one can also think of ML as a mean to derive descriptive expressions. 74 

Unlike statistical methods, ML directly learns from data in search of patterns and makes minimal 75 

assumptions about the data type, origin, etc. (thereby becoming useful even if data was collected 76 

from unstandardized/homogenous methods or when the data contains highly nonlinear 77 

interactions). In addition, ML becomes useful in scenarios where data is wide (i.e., with the number 78 

of parameters (or simply features)  exceeds the number of observations) [15]. A key distinction 79 

between ML and statistical methods is that ML algorithms are often designed to satisfy a 80 
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penalization (or cost function) to overcome issues such as overfitting and poor generalization to 81 

new data [16]. According to Bzdok et al. [12], “statistics draws population inferences from a 82 

sample, and machine learning finds generalizable predictive patterns.” 83 

The integration of ML into engineering problems has significantly risen over the past few years. 84 

For example, ML algorithms have been applied to structural engineering problems (i.e., property 85 

prediction and response prediction) [17,18], material discovery [19,20], robotics [21,22] etc. 86 

However, the bulk of the commonly used ML algorithms can be classified under Blackboxes. Such 87 

algorithms have complex inner working structure, and as such, provide the user with a tool to map 88 

the variables to the outcome of a given problem. Such tools are the opposite of what engineers are 89 

familiar with. The lack of transparency and figurative constructs associated with ML negates 90 

engineers from adopting ML tools. A question then arises, how to use ML to arrive at a 91 

representable understanding of phenomena – one that resembles commonly used forms of 92 

engineering expressions?  93 

Thus, this work fosters the use of ML surrogates that can augment complex ML models into 94 

formulae to allow users to create new physics-guided and data-driven descriptive expressions for 95 

complex engineering problems. In this work, Extreme Gradient Boosted Trees (ExGBT), 96 

Adaboost Regressor (AdaBoost), Extra Trees (ET), and TensorFlow Deep Learning (TFDL) are 97 

applied in three case studies to derive expressions that can be used to attain deformation history of 98 

beams under fire, ultimate shear strength of cold-formed steel channels, and cyclic response of 99 

shear deficient of CFRP-strengthened beams. The proposed approach efficiently reduces the 100 

search space to be tackled in a ML analysis and comprises of two steps: 1) physics principles and 101 

ML algorithms are applied to identify features of high importance within a dataset, and then 2) 102 

high-fidelity features are utilized to derive compact expressions via a surrogate. Thus, this work 103 

starts with a discussion on feature selection techniques and then dives into the rationale of mapping 104 

functions and their application to engineering problems.  105 

Feature Selection Techniques  106 

This section builds upon the Law of Parsimony of Occam’s Razor (Nunquam ponenda est 107 

pluralitas sin necesitate), which is often translated to “Entities should not be multiplied beyond 108 

necessity”. This law implies that simplicity is a goal in itself, and hence it is thought of as the best 109 

explanation to a problem is one that involves the fewest possible assumptions whenever possible 110 

[23,24]. Thus, to arrive at compact descriptive expressions, one must identify the key features 111 

governing the phenomenon on hand. The above infers that the user needs to find “the optimal 112 

feature subset, as there is no guarantee that the optimal parameters [features] for the full feature 113 

set are equally optimal for the optimal feature subset.” [25]. Therefore, by identifying key features, 114 

a ML analysis avoids overfitting, provides faster and more cost-effective models, and allows a 115 

deeper insight into the underlying processes that generated the predictions – all of which indicate 116 

an improved performance. 117 

From this view, this section describes commonly used feature selection techniques that can be 118 

applied via ML models. The primary goal of such techniques is to identify features in terms of 119 
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their relevance and redundancy towards the outcome (response or target variable) of a 120 

phenomenon. For example, in a space of features, some can be classified as relevant (by varying 121 

degrees, i.e., strongly, weakly, or irrelevant) and/or redundant/not redundant. A proper analysis 122 

identifies relevant and unique features to realize optimal derivation of design expressions since a 123 

model with fewer unnecessary features can be more interpretable and less computationally 124 

expensive [26]. In general, feature selection techniques in supervised ML can be grouped into three 125 

classes, filter, wrapper, and embedded (intrinsic) methods, and these methods will be discussed 126 

herein in detail. The reader is reminded that information with regard to the history and the 127 

background of each technique can be found in their perspective references, as well as in [25,27–128 

30].  129 

Filter methods  130 

Filter methods select features according to their relationship with the response (target variable) by 131 

means of statistical analysis or feature importance methods. These methods operate prior to the 132 

ML analysis and hence reduce the number of features to be used in the analysis. The bulk of filter 133 

methods evaluate each feature individually to comply with two inherent assumptions; 1) features 134 

have a degree of independence, or 2) are entirely independent of each other – both of which may 135 

or may not be always true [25]. In most cases, a “relevance” score is calculated for all features, 136 

and features with low scores are removed from the analysis. Finally, the leftover features are 137 

presented as inputs to the ML model.  138 

A number of techniques can be grouped under filtering methods. These techniques often follow 139 

the types of inputs and targets (i.e., whether numerical or categorial) – see Table 1. For regression 140 

problems where the target is numerical, correlation-based methods can be applied, such as 141 

Pearson’s correlation coefficient, Spearman’s rank coefficient, alternating conditional 142 

expectations (ACE), etc. On the other hand, in classification problems where the target is 143 

categorial, the following techniques can be used: ANOVA correlation coefficient, Kendall’s rank 144 

coefficient, and Chi-Squared test. Some methods, such as mutual information metric, and Cramer’s 145 

V, can be used for regression or classification problems.  146 

Table 1 Common techniques for filter methods 147 

Target 
Input features 

Continuous Categorial 

Continuous • Correlation metrics (Pearson’s correlation 

coefficient, Spearman’s rank coefficient) 

• Mutual information 

• F-test 

• Neighborhood component analysis 

• ReliefF 

• Sequential feature selection 

• Cramer’s V  

• Mutual information 

• ANOVA correlation coefficient  

• Kendall’s rank coefficient 

• Linear discriminant analysis 

• F-test 

• ReliefF 

• Sequential feature selection 

Categorial • Mutual information  

• Cramer’s V  

• One Way ANOVA 

• Kendall’s rank coefficient  

• Cramer’s V  

• Chi-Squared test 

• Mutual Information 

• Fisher score 
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• Minimum Redundancy Maximum Relevance 

• Neighborhood component analysis 

• Logistic regression 

• Minimum Redundancy Maximum Relevance 

• Neighborhood component analysis 

 148 

Correlation methods are widely used in engineering problems [31,32]. One should note that the 149 

Pearson correlation evaluates a linear relationship between two continuous features. In other 150 

words, such a relationship occurs when a change in one feature is associated with a proportional 151 

change in the other feature. Pearson correlation assumes both features to be normally distributed 152 

and to satisfy homoscedasticity (i.e., data is equally distributed about the regression line). On the 153 

other hand, the Spearman correlation evaluates a monotonic relationship between two ranked 154 

features. A monotonic relationship is one that describes an increase or decrease in one feature as 155 

the other feature increases. The Spearman correlation does not carry any assumptions with regard 156 

to the distribution of the data [33]. Despite their usefulness, traditional correlation metrics may not 157 

be useful in practical scenarios, as 1) linear correlation may not guarantee a causal relationship, 158 

and 2) data obtained may not fit into prescribed assumptions [34].  159 

On the other hand, mutual information is an entropy-based metric between two random features 160 

that measures how much knowing the value of one feature reduces the uncertainty on the other 161 

feature in a range between 0 to 1 (with higher values indicating higher dependency) [35]. This 162 

measure can identify linear or nonlinear associations and is invariant under transformation [36]. 163 

Cramer’s V measures association between two categorical variables in a range between 0 to 1 164 

based on the chi-square statistic (with a score of unity inferring that one variable being entirely 165 

determined by the other). 166 

Some of the advantages of filter methods include, 1) they are computationally simple and hence 167 

can be easily scaled to high-dimensional datasets, 2) they are independent of the ML model to be 168 

used in the analysis, and 3) feature selection needs to be performed only once, and prior to the start 169 

of the ML analysis. On the other hand, filter methods are associated with a user preference or 170 

subjective nature. For example, the user must select the confidence level to be applied in the 171 

selection filtering analysis. Thus, feature relevance scores do not have obvious/agreed upon cut-172 

off points or metrics to declare which features are of relevance to the phenomenon on hand. A 173 

common disadvantage of some filter methods is that they tend to disregard feature dependencies, 174 

as well as any interaction with the target variable. It is worth noting that there exist a few solutions 175 

to the aforenoted problems (e.g., multivariate search, etc.), as shown in [25,30]. 176 

Wrapper methods 177 

Unlike filter methods, wrapper methods search for well-performing features by evaluating all the 178 

possible combinations of features against an evaluation criterion (or a performance metric) 179 

belonging to a given ML algorithm [37,38]. In a way, wrapper methods encompass search 180 

algorithms that manipulate features by adding or removing them in pursuit of identifying a 181 

combination that maximizes the ML performance (predictive capability). Despite their superiority 182 

and taking feature dependencies into account, it is due to their extensive search space and reliance 183 
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on specific algorithms that wrapper methods can be vulnerable to high computational cost and 184 

bias.  185 

Three primary techniques can be employed in wrapper methods: forward selection, backward 186 

selection, and stepwise selection. In the first technique, the analysis starts with a null set of features 187 

which expands by iteratively adding relative features to the ML model providing the model’s 188 

performance continues to improve. The opposite happens in the second technique, wherein the 189 

analysis starts with all features first, and then worst-performing features (based on a predefined 190 

significance level) are removed from the feature space. This iterative procedure ends once no 191 

improvement is observed by the removal of lasting features [25]. Both of these techniques fall 192 

under sequential feature selection methods. A stepwise selection combines both forward selection 193 

with the addition of checking the significance of the newly added feature, and if such significance 194 

is found to be minor, then the newly added feature is removed in a similar manner to backward 195 

selection.  196 

Commonly used wrapper algorithms include Recursive feature elimination (RFE) [39], and 197 

Simulated annealing (SA) [40], to name a few, and these can be used in regression and 198 

classification problems. Finally, it is worth noting that wrapper methods can employ a greedy or 199 

non-greedy approach to selecting features. In the former, a feature search path always follows the 200 

direction that seems favorable to realizing a solution at the time of the iteration (which may lead 201 

to a quick solution but can also lead to being stuck at a local optimal as opposed to a global one). 202 

On the other hand, a non-greedy approach (i.e., SA) re-evaluates previous combinations of features 203 

and is flexible enough to dive into an unfavorable direction for space search if it appears to have a 204 

potential benefit within a particular iteration [41].  205 

Embedded (intrinsic) methods 206 

Embedded methods learn feature importance during the model training process, and hence it has a 207 

built-in capability to identify features of merit to a particular phenomenon via the implementation 208 

of regularizers (L1, L2, etc.), constraints, or objective functions. This turns into two positive 209 

advantages: 1) accounting for feature interactions, and 2) requiring less computational resources. 210 

On another front, embedded methods share some similarities with wrapper methods in which 211 

selection techniques are only specific to the used algorithm, which may also cause bias. Commonly 212 

used embedded methods include tree ensemble derivatives (Extra Trees, Random Forest), as well 213 

as regularized regressions (those which include a penalty: to reduce over-fitting such as Adaboost, 214 

LASSO, or to features that do not contribute to the target variable, etc.) [30].  215 

Some of the advantages of embedded methods include quickness resulting from the selection 216 

process being embedded within the model fitting process, which negates the need for external 217 

selection tools. Also, the intrinsic nature of these methods enables the model from attaining a direct 218 

connection that yields informed decisions on selecting the right features that best satisfy 219 

the objective (or optimization) function employed by the model. Conversely, a major limitation to 220 

embedded methods is that they are model-specific (which implies that some ML models might 221 

perform better than others on the same dataset). In retrospect, some of the techniques that employ 222 

a greedy search approach might also experience the same limitations as wrappers.  223 
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Noting the above and given the nature of most structural and fire engineering problems and 224 

similarity between wrappers and embedded methods, it is then thought of best to showcase the 225 

general use of filter methods (based on correlation and mutual information) and embedded 226 

methods (through four different algorithms ExGBT, AdaBoost, ET, and TFDL). This stems from 227 

observations that most engineers are likely to either: 1) filter out unwarranted features before a 228 

ML analysis (in a similar manner to carrying out an experimental or numerical investigation), or 229 

2) directly apply a ML model to examine a phenomenon. In the event that wrappers are to be used, 230 

then additional information can be found elsewhere [42].  231 

Rationale to Mapping Functions  232 

Deriving a mapping function requires an understanding of the physical phenomenon that such a 233 

function aims to map, or tie. Mapping a phenomenon infers that the relationship between 234 

governing factors (i.e., features) is attained, or perhaps can be approximated close enough, and 235 

with sufficient consistency, that the derived function can be used with confidence [43]. Simply 236 

put, a mapping function is an expression that intelligently ties the input(s) of a phenomenon to the 237 

output(s) of a phenomenon. To maximize the effectiveness of a mapping function, such a function 238 

is to be compact, reliable, and easy to use. While simple/compact functions are preferable, complex 239 

phenomena may sometimes yield intricate functions.  240 

To better showcase the concept of mapping functions, a visual engineering example can come in 241 

handy. In practice, beams are load bearing members in structural systems. As such, beams are 242 

designed to satisfy strength (i.e., to have a load bearing capacity that exceeds the magnitude of 243 

applied loading) and serviceability (e.g., should not deflect beyond a certain limit) criteria [44]. 244 

From a practical perspective, load bearing capacity and degree of deformation in a beam can be 245 

easily calculated following engineering and mechanics principles. However, under certain 246 

conditions (say, when a fire breakout), assessing load bearing capacity and deformation history 247 

turns into a highly multifaceted problem [45].  248 

Given that the magnitude of deformation a beam undergoes under fire conditions primarily reflects 249 

the degree of degradation within its load bearing capacity, then it is quite possible to associate 250 

these two phenomena together [46]. The above is also true, noting how most fire-based evaluations 251 

rely on the degree of deformation a beam experiences to identify the point in time that declares 252 

failure [47,48]. Thus, under fire conditions, a primary interest to engineers would be to trace the 253 

time- or temperature-deformation history of a fire-exposed beam. Attaining such history 254 

experimentally is an involved process due to the harsh nature of fire tests and the need for 255 

specialized equipment and experienced personnel [49].  256 

Similarly, to model such history, a user can develop a thermo-mechanical FE model that captures 257 

the interaction between fire, beam geometry, and materials properties, as well as applied loads. 258 

Realizing the aforenoted interaction requires deep knowledge on the response of construction 259 

materials as a function of elevated temperatures, together with other aspects (i.e., temperature-260 
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induced forces, restraint conditions, and so on) [50]. Both testing and FE approaches are well 261 

accepted and have been proven effective, yet continue to suffer on a few fronts (e.g., cost/time 262 

associated with setting up fire tests, need for dedicated software/workstations, etc.) [51]. Thus, an 263 

opportunity to develop a new approach to tracing the deformation history of beams (or any 264 

structural elements for that matter) under fire conditions presents itself.  265 

Physics principles show that the deformation of a fire-exposed beam results from stresses 266 

generated due to applied loading, P, and degradation to the beam’s sectional capacity (a function 267 

of temperature rise, geometric features, material properties, restraints, etc.) [46]. Since P remains 268 

virtually constant during a fire, then the extent of deformation reflects the cumulative degradation 269 

in material properties and any possible losses in cross-section size. To better articulate the 270 

deformation of beams under fire, Fig. 1 illustrates the deformation history of two identical beams, 271 

Beam 1 and Beam 2. Beam 1 is loaded with P1 (where P1>P2 and P2 is applied to Beam 2). Since 272 

P1>P2, then Beam 1 will undergo higher levels of deformation under fire. Arriving at this notion 273 

is trivial since only one feature (P) is varied between the two beams. However, if other features 274 

were to be varied as well, then the problem on hand substantially grows.  275 

Noting the above, a hypothesis can then be formulated; “in order to obtain deformation history of 276 

a beam under fire, all that is needed is to identify the primary features and the governing 277 

relationship that ties these features to deformation patterns”. Simply put, the so-called governing 278 

relationship is a mapping function that maps the aforenoted relationship. Arriving at such a 279 

function would allow engineers to predict beams' deformation and, by extension, other members 280 

with ease and without relying on complex tests or simulations.  281 

 282 
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Fig. 1 Typical response of beams under fire conditions 300 

The concept of mapping functions is envisioned to yield models (say design equations) that stem 301 

from a data driven nature. Such models are a bit different than those often obtained from structural 302 

engineering or fire engineering experiments. In such experiments, specimens are designed given 303 

the constraints of the available testing equipment and funds available for tests. Thus, it is rare to 304 

test all parameters in a given campaign as structural and fire tests are quite specialized and 305 

expensive (in a way, we do not have labs that contain all equipment to tests all combinations of 306 

parameters in a single campaign). Therefore, researchers often pick a selection of parameters 307 

(primarily identified by expert judgment and knowledge domain) and build specimens to examine 308 

such parameters using the available equipment they have. While this often leads to good design 309 

expression, given the above limitations, it may also not lead to accounting for all parameters.  310 

On the other hand, a mapping function aims to bridge the limitation above by combining data from 311 

different experiments (as opposed to one) then identify the key parameters (from a data point of 312 

view) to derive generalized functions (equations). In this methodology, there is not guarantee that 313 

the mapping function will be similar to one obtained in the traditional manner. However, the 314 

mapping function is expected to be more encompassment of the examined phenomenon given that 315 

is built from a larger number of observations that contain an extensive range of the examined 316 

parameters (as opposed to a much smaller range in real tests – given the limitation mentioned 317 

above).  318 

Figure 2 demonstrates an approach to deriving mapping functions. To realize a mapping function, 319 

observations are to be collected first (from tests or simulations). Data from such observations is 320 

then treated to identify key features via one or a combination of the noted selection feature methods 321 

described earlier. Feature selection analysis starts by examining all features via filter methods. If 322 

such methods prove useful, then the identified features will be treated as inputs. In the event that 323 

such methods do not prove useful, then a ML algorithm (or group of algorithms as adopted herein 324 

ExGBT, AdaBoost, ET, and TFDL) is applied to examine the importance of all features, and only 325 

the features of high fidelity are selected as input. In this work, fidelity refers to two concepts: 1) 326 

reoccurring features having an importance score of 10%1 or higher, 2)  as calculated by at least 327 

three of the four algorithms listed above. Once the key features are identified, then a ML 328 

model/ensemble is trained on the reduced features to understand the problem on hand and satisfy 329 

a set of performance metrics. In this work, this ensemble is made by blending all of the four used 330 

 
1 This arbitrary score was selected after a series of preliminary studies that were conducted as part of this work which 

were not shown for brevity. Please note the recent works also agree with the notion that we still lack guidance on 

setting standardized scores for feature importance [89–91]. Thus, the reader is reminded that the noted score can be 

revised as per user’s preference. In lieu of the presented two concepts, other methods described in the previous section 

can also be used (i.e., Recursive feature elimination). However, one should also remember that such methods still 

require a user preference component to assign a score for feature importanc, or the number of features to be selected.  
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ML algorithms into a Light Gradient Boosted Trees Regressor ensemble as described by  Delgado 331 

et al. [52].  332 

 333 

Fig. 2 Flowchart of the proposed approach2  334 

 335 

The ensemble is trained and validated on randomly shuffled sets of the observations on hand. Three 336 

sets are created (T: training, V: validation, and S: testing). The ensemble is trained and validated 337 

on the T and V sets, respectively, and then independently cross-checked through assessing the S 338 

(hold-out) set. In all cases, 10-fold cross-validation is employed. In each set, performance metrics 339 

intended to measure test measurements' closeness to that predicted by the ensemble are applied c. 340 

In this work, three regression metrics, including Mean Absolute Error (MAE), Root Mean Squared 341 

Error (RMSE), and Coefficient of Determination (R2) – see Eqs. 1-3 [53–56], are adopted.  342 

𝑀𝐴𝐸 =  
∑ |𝐸𝑖|𝑛

𝑖=1

𝑛
           (1) 343 

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
           (2) 344 

𝑅2 = 1 − ∑ (𝑃𝑖 − 𝐴𝑖)2𝑛
𝑖=1 / ∑ (𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2𝑛

𝑖=1         (3) 345 

 346 

where, A: actual measurements, P: predictions, n: number of data points, E = A-P. 347 

Finally, the ensemble is augmented with a surrogate3 that translates the understanding of the model 348 

into a mathematical function, thereby a mapping function. This surrogate is also examined via the 349 

three metrics above with the addition of two new tests. Those tests are recommended by Smith 350 

[57] (correlation coefficient (R) > 0.8 with low errors metrics (e.g., MAE) indicates a strong 351 

 
2 Note: this approach can be augmented by referring to the last two sections for a discussion on some of the limitations 

that may arise. 
3This work applies Genetic Algorithms (GA) as a surrogate technique to derive mapping functions. GA has been 

thoroughly examined in the open literature and a more formal and complete discussion on GA can be found at [92,93]. 

Additional techniques can also be used such as CARTs [94]. 

Derive Mapping function via surrogates

Evaluate fitness of ML model/ML ensemble 

Apply ML model/ML ensemble

Select key features via selection methods

Collect physics-based observations on phenomenon
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correlation between the predictions and actual measurements exists)), and Roy and Roy’s [58] 352 

external predictability indicator (Rm > 0.5). The correlation coefficient and external predictability 353 

indicator are calculated as: 354 

𝑅 =
∑ (𝐴𝑖−𝐴𝑖)(𝑃𝑖−𝑃𝑖)

𝑛

𝑖=1

√∑ (𝐴𝑖−𝐴𝑖)2
𝑛

𝑖=1
∑ (𝑃𝑖−𝑃𝑖)2

𝑛

𝑖=1

                (4) 355 

𝑅m = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜2|)                (5) 356 

where 357 

 𝑅𝑜2 = 1 −
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑖

𝑜)2𝑛

𝑖=1

∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−mean of predictions)2𝑛

𝑖=1

, 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑖
𝑜 = 𝑘 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖   (6) 358 

And k is the slope of regression lines between the regressions of actuals against predictions.  359 

For completion, the user may opt to use additional performance metrics than that described above 360 

given the notion that we do not have a standardized procedure of selecting and assigning metrics. 361 

This work opted to showcase the presented metrics as they have been widely used by researchers 362 

in the area of structural and fie engineering [38,59,60].  363 

Selected Machine Learning Algorithms   364 

This section briefly describes the four algorithms showcased herein (ExGBT, AdaBoost, ET, and 365 

TFDL) since the full description is found in their respective references, as well as in [61–65]. To 366 

maintain harmony, all algorithms were primarily used in their default settings and then applied to 367 

all three case studies. The reader is also reminded that the proposed approach is algorithm-agnostic 368 

and is applicable by using other algorithms as well. The selected algorithms are shown herein for 369 

illustration purposes.  370 

Extreme Gradient Boosted Trees (ExGBT) 371 

The ExGBT is a sequential model that generates predictions from weaker tree-like models by 372 

optimizing an arbitrary differentiable loss function [66]. Notably, ExGBT aligns successive trees 373 

to previously obtained residual errors to concentrate training on the most challenging targets to 374 

predict, as seen here:  375 

 376 

𝑌 = ∑ 𝑓𝑘(𝑥𝑖)𝑀
𝑘=1 , 𝑓𝑘 ∈ 𝐹 = {𝑓𝑥 = 𝑤𝑞(𝑥), 𝑞: 𝑅𝑝 → 𝑇, 𝑤 ∈ 𝑅𝑇}    (7) 377 

 378 

where, M is additive functions, T is the number of leaves in the tree, w is a leaf weights 379 

vector, wi is a score on i-th leaf, and q(x) represents the structure of each tree that maps an 380 

observation to the corresponding leaf index [67]. The code of the used ExGBT can be found online 381 

at [68,69]. This algorithm incorporates the following pre-tuned settings of learning rate of 0.02, 382 

“least squares regression loss” function, maximum tree depth of 7, subsample feature of 0.8, and 383 

1000 for the number of boosting stages. 384 
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 385 

AdaBoost Regressor (AdaBoost) 386 

The Adaptive Boosting algorithm fits a regressor to the original dataset and then fits additional 387 

copies of the same regressor with weights adjusted according to the error of the current prediction 388 

[66]. In AdaBoost, the notion is that a committee of regressors will behave in a superior manner 389 

to a single regressor. The code script for this algorithm can be found at [70], which has a typical 390 

loss function of: 391 

 392 

𝐿 = ∑ 𝐿𝑡(𝑖)𝐷𝑡(𝑖)𝑚
𝑖=1           (8) 393 

 394 

where Lt is a loss function (i.e., linear, exponential, etc.) constrained within [0, 1], m is the 395 

number of examples, and Dt is for data distribution. The adopted algorithm used a “linear” loss 396 

function and a learning rate of 0.1. 397 

 398 

Extra Trees (ET) 399 

The ET algorithm is one that comprises of a large number of decision trees (DTs) compiled into 400 

one algorithm to examine the whole dataset. Given the nature of such trees, a prediction from an 401 

ET follows the majority vote principle (e.g., arithmetic mean of all DTs) [63]. A typical 402 

formulation of ET is similar to a Random Forest algorithm, as can be seen herein: 403 

 404 

𝑌 =
1

𝐽
∑ 𝐶𝑗,𝑓𝑢𝑙𝑙

𝐽
𝑗=1 + ∑ (

1

𝐽
∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑗(𝑥, 𝑘)𝐽

𝑗=1 )𝐾
𝑘=1       (9) 405 

 406 

where, J is the number of trees, k represents a given feature, K is the total number of 407 

features, cfull is the average of the entire dataset (initial node). The used algorithm can be found 408 

herein [71] and has the following default settings; number of trees and leaves = 500 and 50, 409 

respectively, and a maximum depth of “none”. 410 

 411 

TensorFlow Deep Learning (TFDL) 412 

TensorFlow is an open-source library developed by Google Brain to support Deep Learning [72]. 413 

TFDL imitates the topology of the brain and comprises of three layers. These layers use a “relu” 414 

activation function which enables the algorithm of generating an approximation form that permits 415 

gradient-based optimization. The used algorithm in its default settings (neurons in each layer = 44, 416 

number of training examples = 128, optimizer = Adam, learning rate = 0.001) can be found at [65]. 417 

Case Studies 418 

This section describes three case studies to be used in this work. These case studies will be 419 

examined via filter and embedded methods (by using four different algorithms ExGBT, AdaBoost, 420 

ET, and TFDL, and ensemble) to identify critical features and then derive mapping functions 421 

corresponding to each phenomenon.  422 
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Case study 1: mapping function for deformation of reinforced concrete beams under fire 423 

conditions  424 

As discussed earlier, deriving mapping functions to enable physics-guided and simulation-free 425 

assessment of deformation in reinforced concrete beams using ML requires information with 426 

regard to governing features covering geometric characteristics, material properties, level of 427 

loading, etc. These features are to be collected from physical fire tests [73–83]. In this study, 428 

observations from 20 simply supported reinforced concrete (RC) beams tested under standard fire 429 

conditions were collected in an earlier work [46] with the following features: duration of exposure 430 

under standard fire (t), compressive strength of concrete (fc), yield strength of steel (fy), steel 431 

reinforcement ratio (ρs), span length (L), percentage of load ratio (P), concrete cover (V), and 432 

deformation history (Δ) as a function of fire exposure time.  433 

Table 2 and Fig. 3 show further details into the selected features and their ranges. In this database, 434 

all beams are of a rectangular cross-section with a steel reinforcement ratio ranging between 0.5-435 

1.1%. The range of compressive strength of concrete and yield strength of steel is from 15 MPa to 436 

59 MPa, and 240 MPa to 591 MPa. The reported concrete cover varies between 20-50 mm, and 437 

the beams were 1.75 m to 6.50 m long. The applied loading level ranges between 0.30-0.60 of that 438 

applied at ambient conditions. The time of fire exposure extends to 219 min.  439 

https://doi.org/10.1016/j.measurement.2021.110098
https://doi.org/10.1016/j.measurement.2021.110098


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.measurement.2021.110098      

 

Please cite this paper as:  

Naser M.Z. (2021). “Mapping Functions: A Physics-guided, Data-driven and Algorithm-agnostic Machine Learning Approach to Discover Causal and Descriptive Expressions of Engineering 

Phenomena.” Measurement. https://doi.org/10.1016/j.measurement.2021.110098  

14 

 

440 

441 

  442 

Fig. 3 Details on complied database 443 

Table 2 Statistical insights from the collected database 444 

Section Features t (min) fy (MPa) fc (MPa) ρs (%) L (mm) P (%) V (mm) Δ (mm) 

Fire tests 

on RC 

beams 

Min 0.0 240.0 15.0 0.005 1750.0 0.3 20.0 0.0 

Max 219.9 591.0 59.0 0.011 6500.0 0.6 50.0 146.0 

Average 72.5 446.2 38.1 0.009 4186.4 0.5 35.1 37.9 

Standard 

deviation 
54.0 103.7 16.4 0.002 1205.4 0.1 9.9 32.7 

Median 61.1 439.0 30.5 0.010 4500.0 0.5 38.0 27.8 

Skewness 0.9 -0.5 0.1 -0.3 0.0 -1.0 0.2 1.1 

Pearson correlation         

Parameter t fy fc ρs L P V Δ 

t 1.000        

fy -0.038 1.000       

fc -0.124 0.579 1.000      

ρs 0.465 -0.017 -0.127 1.000     

L 0.113 -0.783 -0.515 0.404 1.000    

P 0.343 0.510 0.355 0.659 -0.218 1.000   

V 0.482 -0.166 -0.074 0.804 0.370 0.486 1.000  

Δ 0.665 -0.240 -0.169 0.140 0.319 -0.041 0.058 1.000 

Mutual Information          

Parameter t fy fc ρs L P V) Δ 

t 0.283        

fy 0.135 0.045       

fc 0.151 0.870 1.000      

ρs 0.135 0.966 0.838 0.027     

L 0.135 0.966 0.838 1.000 0.035    

P 0.122 0.912 0.788 0.869 0.869 0.043   

V 0.119 0.718 0.671 0.725 0.725 0.591 0.030  

Δ 0.323 0.084 0.095 0.084 0.084 0.079 0.058 1.000 

 445 

 446 

  447 

 448 
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Looking at Fig. 4 shows the feature importance as measured by all algorithms. As one can see, 449 

only four features were shown to have an importance score of 10% or more across at least three of 450 

the four algorithms used. Thus, these features are t, L, fc, and P, and hence these features were only 451 

input to the ensemble to train this ensemble to learn the deformation history phenomenon of RC 452 

beams under fire conditions. The performance of this ensemble in training/validation/testing is 453 

listed in Table 3. As one can see, the ensemble performs well wherein its error metrics represent 454 

small differences (about 5-8 mm) and high R2 scores exceeding 94%. Therefore, this performance 455 

is deemed acceptable given that the metrics are similar to those commonly reported by other 456 

researchers [17,84], as well as our previous study (which utilized all features and did not examine 457 

the importance of features) [46].  458 

Table 3 Performance metrics for training/validation/testing regimes.  459 

Metric Ensemble Mapping function 

MAE 5.16 4.32 4.03 7.82 7.05 7.13 

RMSE 8.02 6.36 6.39 10.58 9.45 9.99 

R2 94.30 96.03 96.11 90.07 91.33 90.49 

 460 

Thus, this ensemble is augmented with a GA that yields the following mapping function. Metrics 461 

for this function are also listed in Table 3, and a cross-comparison is also shown in Fig. 4. It is 462 

clear that this reduced-ordered mapping function has good prediction capability. In addition, the 463 

mapping function derived herein also satisfies Smith [57]  (R = 0.96 > 0.8) and Roy and Roy’s 464 

[58] (Rm = 0.65 > 0.5) recommendations. As such, this expression can be used directly to evaluate 465 

deformation history in RC beams under fire conditions with ease as opposed to carrying out 466 

complex FE simulations. A sample of validation plots for induvial beams used in this case study 467 

is shown in Fig. 4. Overall, the derived mapping function seems to capture the deformation history 468 

of all presented beams and across the full duration of fire exposure time.  469 

𝛥 = 0.326𝑡𝑓𝑐 + 0.0049𝐿𝑃 + 0.0005𝑡𝐿 + 9.533 × 10−5𝑡2𝑓𝑐 + 1.679 × 10−5𝑡3 + 2.088 × 10−6𝑡2𝐿 − 9.77 −470 

5.49𝑡 − 0.0137𝑡2 − 1.177 × 10−5𝑡𝑓𝑐𝐿 − 0.0029𝑡𝑓𝑐
2 − 0.0937𝑡𝑓𝐶𝑃    (10) 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 
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(a) Feature importance 

 

 
(b) Measured and predicted deformations 

 

 
(c) Deformation history in Beam 1 

 

 
(d) Deformation history in Beam 2 

 

 
(e) Deformation history in Beam 3 

 

 
(f) Deformation history in Beam 4 

 

 
(g) Deformation history in Beam 5 

 

 
(h) Deformation history in Beam 6 

 

Fig. 4 Evaluation of feature importance and mapping function 479 
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Case study 2: mapping function for ultimate shear strength of cold-formed steel channels 480 

Due to the complexity of cold-formed steel (CFS) channels with slotted webs, the literature does 481 

not have accepted design expressions that can be applied to calculate their ultimate shear strength. 482 

Thus, Degtyarev & Degtyareva [55,85–87] carried out a comprehensive numerical campaign 483 

examining 3,512 FE simulations to investigate the ultimate shear strength of CFS channels with 484 

slotted webs. In this campaign, the ultimate shear strength was numerically obtained by accounting 485 

for material and geometric nonlinearities, as well as initial geometric imperfections. As such, this 486 

database makes a suitable candidate to explore the potential of the proposed mapping function 487 

approach.  488 

Overall, this database accounts for 14 features for channels with realistic boundary conditions: 489 

channel depth (D), channel flange width (B), channel flange stiffener length (B1), channel thickness 490 

(t), length of slots (Lsl), height of slots (Wsl), spacing of slots in the longitudinal direction (Ssl), 491 

spacing of slots in the transverse direction (Bsl), number of perforated regions (N), number of slot 492 

rows (n), yield stress of steel (fy), inside bend radius (r), the aspect ratio (a/h), and height of the 493 

longitudinal stiffener (hst), to predict the ultimate shear strength, Vn (see Fig. 5).  The outcome of 494 

the Pearson correlation and mutual information analyses is listed in Table 4 and shows a strong 495 

correlation between channel thickness and inside bend radius, and ultimate shear buckling load. 496 

From a practical consideration, Degtyarev & Degtyareva [55,85–87] took the inside bend radius 497 

as 2t in all of their FE models, and hence the strong association between r and t. As one can see, 498 

filter methods do not seem to provide good insights to feature selection; thereby, the four ML 499 

algorithms are then applied.  500 
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Table 4 Statistical insights from the collected database. 501 

 D (mm) B (mm) B1 (mm) t (mm) Lsl (mm) Wsl (mm) Ssl (mm) Bsl (mm) N n fy (MPa) r (mm) a/h hst (mm) Vn (N) 

Minimum 150.0 20.0 0.0 1.0 60.0 3.0 85.0 7.5 1.0 6.0 250.0 2.0 0.5 0.0 1199.4 

Maximum 250.0 95.0 26.0 3.0 90.0 7.0 115.0 11.5 2.0 12.0 500.0 6.0 1.5 60.0 99535.5 

Average 225.8 57.8 13.0 2.0 75.0 5.0 100.0 9.5 1.7 8.0 490.9 4.0 1.0 19.6 21155.7 

Standard 

deviation 
35.4 13.5 4.3 0.8 11.0 1.5 7.3 1.0 0.4 2.4 46.9 1.6 0.1 22.0 13557.1 

Skewness -1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.8 -4.9 0.0 0.0 0.7 1.2 

Pearson correlation              

Parameter D B B1  t  Lsl  Wsl  Ssl  Bsl  N n fy  r  a/h hst  Vn  

D  1.000               

B  0.649 1.000              

B1  0.000 0.000 1.000             

t 0.000 0.000 0.000 1.000            

Lsl  0.000 0.000 0.000 0.000 1.000           

Wsl  0.000 0.000 0.000 0.000 0.000 1.000          

Ssl  0.000 0.000 0.000 0.000 0.000 0.000 1.000         

Bsl  0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000        

N 0.218 0.132 0.000 0.000 0.000 0.000 0.000 0.000 1.000       

n 0.371 0.249 0.000 0.000 0.000 0.000 0.000 0.000 0.012 1.000      

fy  -0.133 -0.103 0.000 0.000 0.000 0.000 0.000 0.000 -0.008 -0.080 1.000     

r  0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000    

a/h 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000   

hst  0.312 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.540 0.131 -0.003 0.000 0.000 1.000  

Vcr  0.115 0.084 0.018 0.798 -0.183 -0.194 0.037 0.025 -0.141 -0.168 0.121 0.798 -0.171 -0.156 1.000 

Mutual Information              

Parameter D B B1  t  Lsl  Wsl  Ssl  Bsl  N n fy  r  a/h hst  Vn  

D  0.015               

B  0.681 0.009              

B1  0.056 0.188 0.001             

t 0.007 0.107 0.166 0.683            

Lsl  0.014 0.072 0.108 0.006 0.047           

Wsl  0.014 0.072 0.108 0.006 0.190 0.0555          

Ssl  0.007 0.037 0.057 0.003 0.263 0.263 0.003         

Bsl  0.007 0.037 0.188 0.107 00072 0.263 0.201 0.001        

N 0.032 0.020 0.000 0.000 0.000 0.000 0.057 0.000 0.015       

n 0.108 0.073 0.015 0.001 0.008 0.008 0.005 0.005 0.002 0.015      

fy  0.045 0.054 0.017 0.045 0.056 0.056 0.030 0.030 0.038 0.038 0.0109     

r  0.007 0.107 0.166 1.000 0.006 0.006 0.003 0.003 0.001 0.001 0.045 0.683    

a/h 0.045 0.054 0.188 0.166 0.108 0.056 0.030 0.030 0.038 0.038 0.045 0.045 0.017   

hst  0.101 0.084 0.028 0.001 0.012 0.012 0.008 0.008 0.0117 0.017 0.001 0.001 0.015 0.016  

Vcr  0.018 0.032 0.031 0.333 0.024 0.027 0.006 0.007 0.012 0.020 0.025 0.333 0.011 0.015 1.000 
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 508 

Fig. 5 Frequency of identified features of selected channels in the compiled database 509 
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As mentioned earlier, we lack a simple mathematical expression to evaluate the ultimate shear 510 

strength of CFS channels with slotted webs. Hence, deriving a mapping function will be helpful to 511 

engineers and designers to enable using such channels in practical scenarios. In this case study, 512 

the identified features that satisfy the set conditions by the four algorithms are D, t, Lsl, Wsl, n, and 513 

hst (see Fig. 6a), and these features were used to build an ensemble. Similar to the first case study, 514 

the ensemble was augmented with a surrogate to yield a mapping function, as shown below. The 515 

performance of both ensemble and mapping functions is displayed in Table 5 and Fig. 6b. Both 516 

cross-examinations show the validity of the ensemble and derived mapping function, which attains 517 

low error values as compared to the measured shear strength values. In addition, the ensemble and 518 

mapping function also score well with respect to R2 (>84%). Finally, one can see that the mapping 519 

function derived herein also satisfies Smith [57]  (R= 0.91 > 0.8) and Roy and Roy’s [58] (Rm = 520 

0.52 > 0.5) recommendations – thereby ensuring a new layer of validation.  521 

𝑉𝑛 =
6174.2𝐷𝑡

max(0.675 𝑜𝑟 𝐿𝑠𝑙+ℎ𝑠𝑡)
+ 1.87𝑊𝑠𝑙𝑛 +

55669.19𝐷𝑡2

(𝐿𝑠𝑙 ×max(0.675 𝑜𝑟 0.988+𝐿𝑠𝑙+1.867𝑊𝑠𝑙𝑛))
− 1644   (11) 522 

 523 
(a) Feature importance 524 
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 525 
(b) Measured and predicted ultimate shear strength using mapping function 526 

Fig. 6 Evaluation of feature importance and mapping function  527 

Table 5 List of selected performance metrics for training/validation/testing regimes.  528 

Metric Ensemble Mapping function  

MAE 3054.71 3200.83 3195.00 3283.18 3420.48 3195.13 

RMSE 4467.25 5217.82 5434.79 19.32 18.60 17.56 

R2 88.27 85.05 84.06 87.20 84.32 84.75 

 529 

Case study 3: mapping functions for cyclic response of reinforced concrete beams strengthened 530 

with CFRP  531 

In this case study, eight RC cantilever beams were collected from the work of Tanarslan [88]. 532 

These beams were 200 mm wide and 350 mm deep, with a span of 1600 mm (see Fig. 7). All 533 

beams were designed to be shear deficient and hence were reinforced with three 20 mm diameter 534 

bars in the compression zone and three 20 mm diameter bars in the tension zone covered with a 535 

concrete cover of 30 mm. The examined beams were tested under cyclic loading, and the measured 536 

data contained load (P) – deformation (Δ) points. Seven beams were strengthened with carbon fiber 537 

reinforced concrete rebars following the near-surface mounted method. The beams varied CFRP 538 

spacing (S) and bar size (D) while maintaining a shear span ratio of 5 and compressive strength of 539 

concrete at 25 MPa. As such, this database presents a comfortable size of controlled (limited in 540 

number) features, as can be seen in Table 6. As one can see, there is a strong correlation and mutual 541 

information between load and deformations with minor correlation and mutual information within 542 

the other features. Given the nature of the measured data in cyclic tests, correlation and mutual 543 

information between some features were not calculated.  544 
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 545 

Fig. 7 Reinforcement details of beams (Credit Line: Elsevier, Construction and Building Materials. The 546 

effects of NSM CFRP reinforcements for improving the shear capacity of RC beams, H.M. Tanarslan, July 12, 2011, 547 

License Number: 5106680425995) 548 

Table 6 Statistical insights from the collected database.  549 

Pearson correlation        

Parameter P  a/d fc D S Δ 

P 1.000      

a/d -  1.000     

fc - - 1.000    

D 0.055 - - 1.000   

S 0.010 - - 0.565 1.000  

Δ 0.952 - - 0.077 -0.019 1.000 

Mutual Information       

Parameter P  a/d fc D S Δ 

P 0.732      

a/d - -     

fc - - -    

D 0.046 - - 0.004   

S 0.039 - - 0.535 0.004  

Δ 0.574 - - 0.053 0.042 1.000 

 550 
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551 

 552 

Fig. 8 Frequency of identified features in the compiled database 553 

In this case study, the goal is to derive a mapping function that can allow re-construction of load-554 

deformation (cyclic) history response of shear deficient reinforced concrete beams strengthened 555 

with CFRP. Figure 9 shows that P is the only reoccurring feature that appears to have an 556 

importance that satisfies the conditions outlined in this work which from a data examination point 557 

of view agrees with the fact that only the P and deformation are varied to a much larger extent as 558 

opposed to other features (S or D which are fixed for each particular beam). However, relying on 559 

P only will not be informative as the response of the eight identical beams examined as part of this 560 

work varies due to the different strengthening systems used (in terms of CFRP rebar diameter, D, 561 

and spacing, S, between such rebars). Thus, all three features are used herein to derive a mapping 562 

function.  563 

The performance of both ensemble and mapping function is displayed in Table 7 and Fig. 9. The 564 

error observed by performance metrics for ensemble and mapping function prediction are low 565 

(within 1.5 mm for MAE and with 2.5 mm for RMSE). In addition, the mapping function derived 566 

herein also satisfies Smith [57]  (R = 0.97 > 0.8) recommendation, and also passes Roy and Roy’s 567 

[58] recommendation (Rm = 0.73 > 0.5). Also, the cyclic response of three beams was plotted 568 
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further to showcase the validity of the derived mapping function. Both illustrations show the 569 

validity of the ensemble and derived mapping function.  570 

𝐷 = 0.761 + 0.153𝑃 + 0.00073𝑆2𝐷 + 0.00017𝑃2 + 0.0096𝐷3 + 0.00057𝑃𝐷2 + 1.357 × 10−6𝑃3 +571 

1.199𝑆𝑡𝑒𝑝(0.0019𝑃) − 0.0685𝑆 − 0.00037𝑃𝑆 − 7.35 × 10−5𝐷𝑆2     (12) 572 

Table 7 List of selected performance metrics for training/validation/testing regimes.  573 

Metric Ensemble Mapping function  

MAE 1.33 1.39 1.28 1.42 1.49 1.41 

RMSE 2.25 2.40 2.14 2.32 2.48 2.21 

R2 94.88 94.44 95.25 94.54 94.03 94.95 

 574 
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(a) Feature importance 

 

 
(b) Measured and predicted deformations  

 
(c) Comparison for Beam 5 

 

 
(d) Comparison for Beam 6 

 

 
(e) Comparison for Beam 8 
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Fig. 9 Evaluation of feature importance and mapping function  575 
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Further Insights into Mapping Functions  576 

This section presents additional insights and observations that arose during this work to provide 577 

the reader with a holistic look into the proposed mapping function approach.  578 

Global vs. local predictivity 579 

Figure 10 displays a comparison between measured observations from tests to corresponding 580 

predicted values obtained from mapping functions in the aforenoted three case studies once in an 581 

organized manner (e.g., ascending order). As one can see, the mapping functions do seem to 582 

adequately capture each examined phenomenon which also meshes with good performance as 583 

displayed by performance metrics discussed in each case study. A deep dive into each sub-figure 584 

further shows that the derived functions also seem to have lower predictivity than the extreme 585 

ranges of each database. This slightly “off” performance is partly due to the limited number of 586 

observations belonging to the extreme range and made available for the ensemble. As such, it is 587 

also advisable to also cross-check the validity of mapping functions across the full range of data 588 

and at a local level (i.e., extreme ranges), in addition to that taken by performance metrics which 589 

evaluate the global predictivity of the function.  590 

 
(a) Deformation in RC beams under fire 

conditions 

 

 
(b) Ultimate shear strength in CFS 

channels with slotted webs 

 

 
(c) Cyclic history of shear deficient CFRP-strengthened RC beams 

Fig. 10 Additional insights into the performance of mapping functions at local vs. global levels 591 
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 592 

Case-by-case predictivity  593 

It is also advisable to cross-check the predictivity of derived mapping functions on a case-by-case 594 

basis (i.e., against each example used in the ML analysis). While the majority of the examples used 595 

herein show that the derived mapping functions achieve high predictivity, a few examples were 596 

seen to suffer a bit. For example, Fig. 11 showcases such examples as taken from case studies 1 597 

and 3 (which rely on a continuous prediction of performance as opposed to predicting a single 598 

value as in case study 2). A close examination of Fig. 11a indicates the worst case seen during this 599 

work. It is clear that the mapping function captures the majority of the deformation history on 600 

Beam 7 but fails in properly capturing this response beyond the 70-minute mark. A similar 601 

observation can also be seen in the case of Beam 2. Figure 11 also shows two examples (Beam 2 602 

and Beam 4) taken from the third case study. This observation can be linked to the need to examine 603 

additional generalization techniques to the derived mapping function. While predictions from the 604 

derived mapping function are adequate (especially in Beam 4, instead of Beam 2), these two cases 605 

are shown herein to note the small gap apparent near the zero region. This gap is linked to the 606 

(Step function) embedded within the derived mapping function. Tuning the Step function has been 607 

shown to lessen this gap. 608 

 609 

 
Case study 1: Beam 7 

 
Case study 1: Beam 8 

 
Case study 3: Beam 2 

 
Case study 3: Beam 4 

Fig. 11 Additional insights into the performance of mapping functions at a case-by-case basis 610 
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 611 

Supplementary thoughts  612 

Additional items such as those related to specific prioritizing algorithmic families, optimization 613 

functions, finetuning hyperparameter, choice of performance metrics are worth investigating, and 614 

these will be examined in future works. Similarly, this work concentrated on deriving one-shot 615 

mapping functions (i.e., those that can be used in a single expression); however, developing multi-616 

mapping functions can be of merit, especially to describe phenomena of high dimensionality/ 617 

complexity or those of coupled nature. In addition, there could exist a slight trade-off between the 618 

convenience of a mapping function and the accuracy of a complex finite element model. This 619 

would be further explored in a future work.  620 

Conclusions 621 

This work presents mapping functions as a cognitive ML and simulation-free approach to derive 622 

physics-guided expressions to describe engineering phenomena. In this approach, a series of 623 

feature selection methods, together with insights from physics principles, are applied to identify 624 

critical features that govern the phenomenon on hand. The identified features are then examined 625 

via a ML ensemble which is then augmented with a surrogate to derive a mapping function. The 626 

proposed approach has been examined against three case studies with notable success (as examined 627 

across a series of performance metrics); deformation history of beams under fire, ultimate shear 628 

strength of cold-formed steel channels, and cyclic response of shear deficient CFRP-strengthened 629 

beams. The following list of inferences can also be drawn from the findings of this study: 630 

• Feature selection methods can aid in finetuning the space of search and hence accelerate 631 

the development of ML models.  632 

• Mapping functions present a modern approach to supplement engineers in evaluating 633 

problems via ML. Such functions may reduce the reliance and need for complex and 634 

expensive physical tests and numerical models.  635 

• The proposed approach can be further improved with respect to generalizing mapping 636 

functions in future works. In addition, interested works are invited to explore the space of 637 

causality arising from large and small datasets, together with the influence of data quality 638 

(as obtained raw from sensors, etc.) and identifying suitable (problem-specific) 639 

performance metrics.  640 
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