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Abstract 8 

The expensive nature and unique facilities required for fire testing make it difficult to conduct 9 

comprehensive experimental campaigns. As such, engineers can often afford to test a small number 10 

of specimens. This complicates attaining a proper inference, especially when addressing questions 11 

in the form of what would have been the fire response of a particular specimen had it been twice 12 

as large? Or had it been made from a different material grade? In hindsight, answering causal and 13 

hypothetical (counterfactual) questions goes beyond the capacity of statistical and machine 14 

learning methods which were built to address observational data. To overcome the above 15 

challenges, this paper presents a causal approach to answering such questions. In this approach, 16 

principles of causal inference are adopted to reconstruct the deformation-time history of reinforced 17 

concrete (RC) columns and propose an idealized fire response for these columns. The findings of 18 

this study indicate the significant influence of the loading level, aggregate type, and longitudinal 19 

steel ratio on the deformation history of fire-exposed RC columns.  20 

Keywords: Causal inference; Fire response; Fire tests; Reinforced concrete columns. 21 

Introduction 22 

Fire tests are complex and expensive and hence, are likely to be relatively small in size. Given the 23 

need for unique facilities and expertise, testing full scale specimens under fire conditions become 24 

of limited nature, and such experimental campaigns become effectively rare. While most publicly 25 

available works often contain 2-6 specimens, only a few of these programs have examined and 26 

reported a significantly large number of tests [1–5].  27 

These programs exist in part as they were funded by governmental efforts to establish or modernize 28 

fire building codes and standards. Some of the publicly available campaigns include those 29 

sponsored by the National Bureau of Standards (NBS, and now the National Institute of Standards 30 

and Technology (NIST) [6], National Research Council (NRC) of Canada [7], and Eurocode [8]).  31 

The results of such tests turn valuable on a number of fronts. First, examining a large number of 32 

specimens within one program implies a greater degree of consistency than examining those to be 33 

collected from a collection of studies. Such consistency arises from maintaining many of the 34 

commonly difficult-to-control latent variables as consistently as possible [9]. Such variables may 35 

include the fabrication process, use of the same fire testing facilities and equipment, and quality 36 

and synergy of the reported results, all of which allow us to better infer the outcome of fire testing 37 

through meaningful comparisons.  38 
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Another front pertains to having a coherent direction of research that leads to the development of 39 

a detailed and wide-ranging test matrix. In a typical matrix, one specimen is left as a benchmark, 40 

and all other specimens are altered. The most common means of designing a test matrix is only to 41 

alter one variable for each specimen. This allows a direct comparison between the benchmark and 42 

each altered specimen, as well as between the specimens themselves [10]. Following this approach, 43 

any change in an observed response from the benchmark specimen can be traced back to the altered 44 

variable.  45 

The one-at-time approach, when statistically meaningful by providing a good sample size in the 46 

test matrix, also allows us to develop predictive tools [11]. The most commonly used tools in the 47 

structural fire engineering domain are charts, tables, and formulas. The goodness of such tools 48 

stems from the goodness of the data (i.e., the results of fire tests) used in creating such tools [12]. 49 

Thus, the uniformity provided in large-sized fire campaigns becomes elemental to the success and 50 

predictability of the resulting estimation or prediction tools [13].    51 

Generally, even the most notable fire testing programs do not examine every possible variation 52 

and/or combination of factors. This is true in the sense that practical limitations persist with regard 53 

to the time, financial resources, and vision of stakeholders. Hence, we often revert to extending 54 

the experimental findings via validated numerical (e.g., finite element) models. This practice has 55 

been well accepted and remains the primary means to complement fire tests or evaluate fire 56 

response as permitted by building codes and standards [14]. For example, Section 4.3 of Eurocode 57 

2 defines the above under “advanced calculation methods… [they] shall be based on fundamental 58 

physical behavior leading to a reliable approximation of the expected behavior of the relevant 59 

structural component under fire conditions.” 60 

At the moment, we continue to lack a robust definition and procedure for building and validating 61 

these calculation methods. Similarly, we lack an understanding of the established standardized 62 

inputs, solution procedures, and outputs used in such methods. These items remain an ongoing 63 

scene of debate that require serious progress [15].  64 

This work stems inspiration from the parallel fields of statistics, medicine, and social and computer 65 

sciences related to establishing an approach to causal inference [16]. Causal inference draws 66 

conclusions pertaining to the existence of a causal connection between the variables. Such a 67 

relationship is often mistaken for a correlational relationship, an elemental means to analyze 68 

experimental results. However, the difference between the two is quite substantial. For instance, 69 

the latter is defined as a general trend where two variables increase or decrease together (i.e., on 70 

average, smaller specimens have a lower fire resistance time than larger specimens). On the other 71 

hand, the former is defined when a causing variable is partly responsible for generating the effect 72 

variable, and this variable is partly dependent on the first [17].  73 

Just like we adopt experimental and finite element principles to carry out tests or create advanced 74 

models, to identify causal relations and answer causal questions, we must employ causal 75 

principles. At this point, the domain of structural fire engineering lacks the front of causality and 76 

causal inference. As a matter of fact, a search with the key terms of “causality”, “causal inference” 77 

and “structural fire engineering” returns very little to no work on this front [18]. Fortunately, the 78 

rise of modern machine learning (ML) now makes it possible to arrive at causal estimations of 79 
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various phenomena with ease [19–21]. This presents an exciting opportunity to explore within the 80 

realm of this domain. This is also a key motivation behind this work.  81 

From this perspective, the current study showcases the merit of causal inference in one of the most 82 

fundamental problems in structural fire engineering by reconstructing the deformation-time history 83 

of various RC columns. Our analysis will leverage a compiled dataset from one of the largest 84 

physical fire tests in recent years carried out by Prof. TT Lie and coauthors from the National 85 

Research Council (NRC) of Canada. Our analysis demonstrates that it is not only possible to infer 86 

new findings from forgotten fire tests causally but that these findings can lead to the development 87 

of idealized models that can extend beyond the original tests. In addition, the results of this analysis 88 

indicate that the fire response history of RC columns is heavily influenced by the present loading 89 

level, aggregate type, and longitudinal steel ratio of the fire-exposed RC columns. This study also 90 

compares the causal approach to that obtained from statistical and traditional data-driven ML to 91 

highlight the importance and merit of adopting causality.  92 

Description of TT Lie’s fire testing programs at NRC 93 

Of interest to this study is the testing program conducted by TT Lie, which is considered one of 94 

the most systematic and comprehensive fire campaigns in the last three decades [1–5]. The testing 95 

program was conducted at the National Research Council (NRC) of Canada with joint capacity 96 

from the Portland Cement Association (PCA).  97 

Overall, 41 full-scale RC columns were tested under three phases wherein the following 98 

parameters were investigated:1) cross-sectional area, 2) cross-sectional shape (square, rectangular, 99 

circular), 3) thickness of concrete cover, 4) percentage of longitudinal reinforcing steel, 5) lateral 100 

reinforcement (tied or spiral), 6) concrete mixture (type of aggregate), 7) concrete strength, 8) 101 

moisture content of concrete (relative humidity), 9) end conditions, 10) axial or rotational restraint, 102 

11) load intensity, 12) load eccentricity, and 13) fire exposure intensity. Each test was documented 103 

by providing a complete temperature-time and deformation-time history, and time to failure. In 104 

addition, the residual strength of a few columns was also measured. This testing program is 105 

informally known as Internal Report No. 569. 106 

The overall goal of this testing program was twofold:1) to generate measured fire resistance data 107 

on RC columns designed in accordance with the American Concorde Institute (ACI) and the 108 

Canadian Building Codes (CBC), and 2) to develop general methods for the calculation of the fire 109 

resistance of concrete columns. It is worth noting that this testing campaign builds upon two earlier 110 

and smaller fire tests by Lie et al. [2] and [3] (published in 1972 and 1974, respectively).  111 

Most of the 41 tested RC columns were tested under fixed-fixed restraints, except five, which were 112 

tested under various restrained conditions. In addition, seven columns were eccentrically loaded. 113 

Two specimens were made of high-strength concrete. Two of circular shape, two of a rectangular 114 

shape, and two were made with lightweight aggregate. One column was tested at ambient 115 

conditions and two were tested under residual conditions. Finally, one specimen was tested under 116 

an intense fire that exceeded the standard fire. Please note that the first fire-tested column was 117 

unloaded and hence the deformation-time for this curve was not provided.  118 
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Of the above RC columns, 14 square columns (13 of 305×305 mm and one 406×406 mm) and one 119 

circular column are of comparable features and hence only these columns from [1] were considered 120 

in this study. All columns were cast from normal strength concrete, were reinforced with Grade 121 

414 MPa steel, and most of the columns had humidity measured to be within the range of 70%. 122 

The features of the columns are listed in Table 1.  123 

To further complement the above columns, two additional rectangular columns studied by TT Lie 124 

[4] and another six more columns (of identical size) but different properties were also added from 125 

another test by TT Lie [5]. Hence, there were twenty three 3810 mm long RC columns examined 126 

herein. 127 

Table 1 Features of examined columns. 128 

No. 
No. in 

Ref. 

Size 

(mm) 

fc 

(MPa) 

fy 

(MPa) 
ρ 

P 

(%) 

Aggregate 

type 

Humidity+ 

(%) 

Failure 

time (min) 
Ref. 

C01 2a 305×305 36.9 414.0 0.022 0.69 Silicate 15.0 170 [1] 

C02 3a 305×305 34.2 414.0 0.022 0.44 Silicate 70.0 218 [1] 

C03 4a 305×305 35.1 414.0 0.022 0.38 Silicate 63.0 220 [1] 

C04 7a 305×305 36.1 414.0 0.022 0.57 Silicate 74.0 208 [1] 

C05 8a 305×305 34.8 414.0 0.022 0.97 Silicate 74.0 146 [1] 

C06 9a 305×305 38.3 414.0 0.022 0.67 Silicate 75.0 187 [1] 

C07 8f 305×305 42.6 414.0 0.044 0.38 Silicate 61.0 252 [1] 

C08 9f 305×305 37.1 414.0 0.044 0.57 Silicate 61.0* 225 [1] 

C09 10b 305×305 40.9 414.0 0.022 0.38 Carbonate 75.0 510 [1] 

C10 11b 305×305 36.9 414.0 0.022 0.56 Carbonate 75.0 366 [1] 

C11 12b 305×305 39.9 414.0 0.022 0.87 Carbonate 76.0 216 [1] 

C12 6c 305×305 46.6 414.0 0.022 0.47 Lightweight 79.0 188 [1] 

C13 7c 305×305 42.5 414.0 0.022 0.44 Lightweight 80.0 259 [1] 

C14 10g 406×406 38.8 414.0 0.025 0.66 Silicate 80.0 262 [1] 

C15 11h D355 41.6 414.0 0.022 0.51 Silicate 65.0 240 [1] 

C16 5h** 305×457 42.5 414.0 0.017 0.46 Silicate 65.0 396 [1] 

C17 6h *** 203×914 42.1 414.0 0.012 0.19 Silicate 58.0 330 [1] 

           

C18 1 305×305 36.0 340.0 0.017 0.70 Silicate 63.2 97 [5] 

C19 2 305×305 29.0 340.0 0.017 0.84 Carbonate 91.8 164 [5] 

C20 3 305×305 28.0 340.0 0.017 0.86 Silicate 98.0 109 [5] 

C21 4 305×305 31.8 340.0 0.017 0.77 Carbonate 80.0 175 [5] 

C22 5 305×457 32.5 340.0 0.018 0.67 Carbonate 69.3 232 [5] 

C23 6 305×305 26.4 340.0 0.014 0.86 Carbonate 66.7 175 [5] 
*Assumed based on C07. **Also appears in [4] as column no. 2. **Also appears in [4] as column no. 3. +defined by 129 

TT Lie as the moisture content of concrete. 130 

The following discussion presents a description of the series of comparisons between the RC 131 

columns listed above. We begin by showcasing the results pertaining to the thermal response and 132 

then move to the deformation response.  133 

Thermal response  134 

It should be noted that the discussion on the thermal performance of these columns was kept to a 135 

minimum, as further details and explanations can be found in the cited reports as well as in the 136 

open literature. Some changes in such a rise were observed, especially in larger columns, owing 137 
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to the size effect or those made from different aggregates. Table 2 lists the columns selected from 138 

Table 2 for comparison purposes. All columns had the same concrete cover of 48 mm, and their 139 

temperatures were measured at the steel rebar level. For completion, a brief discussion on the 140 

effects of shape, aggregate type, size, and humidity is presented. It is worth noting that the 141 

mechanical features (load level, steel ratio) have little to no influence on the thermal response of 142 

columns.  143 

Table 2 Features of examined columns. 144 

No. 
No. in 

Ref. 

Size 

(mm) 

fc 

(MPa) 

fy 

(MPa) 
ρ 

P 

(%) 

Aggregate 

type 

Humidity 

(%) 

Failure 

time (min) 
Ref. 

C01 2a 305×305 36.9 414.0 0.022 0.69 Silicate 15.0 170 [1] 

C06 9a 305×305 38.3 414.0 0.022 0.67 Silicate 75.0 187 [1] 

C12 6c 305×305 46.6 414.0 0.022 0.47 Lightweight 79.0 188 [1] 

C14 10g 406×406 38.8 414.0 0.025 0.66 Silicate 80.0 262 [1] 

C15 11h D355 41.6 414.0 0.022 0.51 Silicate 65.0 240 [1] 

           

C16 2 305×457 42.5 414.0 0.017 0.46 Silicate 65.0 396 [4] 

C17 3 203×914 42.1 414.0 0.012 0.19 Silicate 58.0 330 [4] 

           

C19 2 305×305 29.0 340.0 0.017 0.84 Carbonate 91.8 164 [5] 

C22 5 305×457 32.5 340.0 0.018 0.67 Carbonate 69.3 232 [5] 

 145 

Effect of shape 146 

C06 and C15 are the two closest columns with different shapes and comparable cross-sectional 147 

areas within 6%. C06 is a square column and C15 is a circular column. As one can see in Fig. 1, 148 

the circular columns experience a lower temperature rise as compared to the squared column.  149 

 150 

Fig. 1 Effect of shape [Note that C15 is a circular column] 151 

Effect of size 152 

It is clear that C01, C14, C16, and C17 have identical temperature rises during the first 60 min of 153 

fire exposure (see Fig. 2). Then, the temperature rise slowly differs and reaches a maximum of 154 
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100°C beyond 180 min. Overall, the size effect in these columns do not have a large influence on 155 

temperature rise1 – given that the concrete cover was kept constant at 48 mm. However, the failure 156 

time is drastically different between these columns, which is due, as will be shown in an upcoming 157 

section, to the level of loading and steel reinforcement ratio.  158 

 159 

Fig. 2 Effect of size 160 

Effect of aggregate type 161 

Figure 3 shows that the effect of the aggregate was apparent after the 60 minutes mark. As 162 

expected, C06, which was made from silicate concrete, exhibited the highest temperature rise. 163 

Both C12 and C19 experienced a slightly lower temperature increase of approximately 100°C at 164 

120 min and 150°C at 180 min. The same observation can also be seen by comparing the response 165 

of C16 and C22.  166 

 
1 It should be noted that the size effect is more likely to influence the cross sectional temperature distribution as well 

as core temperature of columns. The disucssion of this section is limited to the temperature rise in steel rebars which 

happen to be a t 48 mm away from the surface of the concrete for all columns.  
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 167 

 168 

Fig. 3 Effect of aggregate type 169 

Effect of humidity (moisture content) 170 

The effect of humidity seems to be minor, as shown in Fig. 4. However, at this point, we cannot 171 

clearly identify the magnitude of this effect because both columns share almost identical features 172 

with regard to size, yield strength, and steel ratio. Both columns were loaded with loads that are 173 

2% apart. However, C01 (15% humidity) failed at 170 min, whereas C06 (75% humidity) failed 174 

at 187 min.  175 
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 176 

Fig. 4 Effect of humidity 177 

Deformation response  178 

The effects of column size, longitudinal steel ratio, level of loading, aggregate type, and degree of 179 

humidity were compared. In this comparison, the RC columns were matched based on how close 180 

they were to each other in terms of the variables presented in Table 1.  181 

In one particular comparison concerning the effect of column size, identical matching was not 182 

possible due to the lack of a tested identical column(s). However, this comparison was maintained 183 

for illustration purposes. It should be noted that all the columns had ties spaced at 305 mm, except 184 

for C17 at 203 mm. Finally, the range of the horizontal axis was kept constant across all figures, 185 

while the vertical axis was not kept constant to allow for maximum legibility.  186 

Effect of loading 187 

Figure 5 shows the effect of loading on the deformation history of RC columns with the most 188 

resemblance. This figure shows such effect for columns made of silicate and carbonate in two 189 

series (steel grade 340 MPa and 414 MPa). Overall, the deformation history is short for heavily 190 

loaded columns. In contrast, lightly loaded columns experienced a larger expansion on average. It 191 

is worth pointing out that columns of silicate aggregates have a steeper and sharper decline when 192 

approaching failure than columns made from carbonate aggregates. Furthermore, heavily loaded 193 

columns did not exhibit much elongation under fire when compared to lightly loaded columns 194 

(<50%). In all cases, the thermal elongation of heavily loaded columns appears to be within 1-2 195 

mm.  196 

As all the depicted columns are of the same size, the effect of loading can be described with a 197 

rotation that takes place within the first 30 min of fire exposure, as the deformation history 198 

becomes heavily dependent on the level of loading at that time. Interestingly,  C19 (84%) and C21 199 

(77%) showed very small deviations, which could be due to the high level of loading. This 200 

observation  could not be verified by columns from the silicate group because of the lack of two 201 

columns with such load levels. 202 
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 203 

(a) Silicate aggregate 204 
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 205 

(b) Carbonate aggregate 206 

Fig. 5 Effect of loading 207 
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Effect of longitudinal steel ratio 208 

Figure 6 presents the effect of varying the longitudinal steel reinforcement on silicate and 209 

carbonate RC columns. It is evident that this effect is more pronounced in columns made from 210 

silicate aggregates. More specifically, columns with higher steel ratios tended to exhibit larger 211 

axial deformation. A clear kink appears around 30 min of fire, which also matches that which takes 212 

place as noted by increasing the load level. For lightly loaded columns (C03 and C07), this kink is 213 

quite large. The same also appeared to a lesser extent in C04 and C08. At the moment, a conclusive 214 

observation in the case of columns made from carbonate aggregate is not possible, given that the 215 

two most similar columns (C19 and C23) are heavily loaded at 84 and 86%, respectively.  216 

 217 

(a) Silicate aggregates 218 

-8

-4

0

4

8

12

16

0 50 100 150 200 250 300A
xi

a
l d

ef
o

rm
at

io
n

 (m
m

)

Time (min)
C07 - Size=305×305, fy=414 MPa, ρ=0.044, P=0.38, S, H=61%
C03 - Size=305×305, fy=414 MPa, ρ=0.022, P=0.38, S, H=63%
C08 - Size=305×305, fy=414 MPa, ρ=0.044, P=0.57, S, H=61*%
C04 - Size=305×305, fy=414 MPa, ρ=0.022, P=0.57, S, H=74%



This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s10694-023-01405-8.  

 

Please cite this paper as:  

Naser M.Z., Çiftçioğlu A, (2023). “Revisiting Forgotten Fire Tests: Causal Inference and Counterfactuals for Learning 

Idealized Fire-induced Response of RC Columns”. Fire Technology. https://doi.org/10.1007/s10694-023-01405-8.    

 

12 
 

 219 

(b) Carbonate aggregates 220 

Fig. 6 Effect of steel ratio 221 

Effect of aggregate type 222 

In general, columns made from carbonate and lightweight aggregates tend to have a fuller 223 

curvilinear deformation history than those made from silicate aggregates. This observation was 224 

valid for columns with low and medium loads. At higher loading levels, all columns, regardless of 225 

the type of aggregate, tended to have a small and short deformation history, indicating an 226 

accelerated failure.  227 

A look into Fig. 7a shows that C19 (silicate) and C20 (carbonate) share the most resemblance in 228 

the columns of grade 340 MPa. These two columns have a similar deformation history of up to 60 229 

min, after which C20 starts to show signs of failure. Evidently, C19 and C20 failed at 164 min and 230 

109 min, respectively. This shows the significant impact of carbonate aggregate on the response 231 

of columns, which marks an increase of about 1 h rating (60 min to 120 min). The same observation 232 

is also made in Fig. 7b by comparing C09 and C03 (but with a much larger variance at failure).  233 

Lightweight aggregates (C13) also outperform silicate aggregates (C02). A direct comparison 234 

between the columns of carbonate and silicate aggregates was not possible.  235 
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 236 

(a) Grade 340 MPa 237 

 238 

(b) Grade 414 MPa 239 

Fig. 7 Effect of aggregate type 240 

Effect of shape 241 

The effect of the column shape can be examined by comparing the deformation responses of the 242 

C15 (circular) and C10 (square) columns – see Fig. 8. It is clear that the circular column tends to 243 

undergo smaller deformation than the square column. However, both columns eventually seem to 244 

share the same response to failure. The reader is to remember that C10 is made from carbonate 245 

aggregate, whereas C15 is made from silicate aggregate. As such, the shown comparison is to be 246 

examined keeping the differences from the previous section in mind as the influence of aggregate 247 

type can be substantial.  248 
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 249 

Fig. 8 Effect of shape [Note that C15 is a circular column] 250 

Effect of size 251 

Figure 9 shows the deformation history of four RC columns that share the most resemblance of all 252 

other columns. The closets of resemblance can be seen in C06 (305×305 mm) and C14 (406×406 253 

mm). It can be seen that while both columns initially seem to have a similar deformation history, 254 

C15 continues to have a longer survivability under fire. In fact, C15 failed at 262 min versus 187 255 

min, as shown in the case of C06. It should be noted that C16 and C17 are presented as the loading 256 

level, and the steel ratio significantly differs from those of C15 and C06.  257 

 258 

Fig. 9 Effect of cross section size 259 
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Effect of humidity (moisture content) 260 

Unfortunately, the effect of humidity was unclear given the large variation between all tested 261 

columns with respect to this factor.  262 

Comparison between all effects 263 

This section presents a general comparison between all examined columns based on four distinct 264 

items: column size, load level, humidity, and yield strength. Figure 10 presents this comparison as 265 

a function of the aggregate type. It is worth noting that the vertical axis, horizontal axis, and size 266 

of the data points were fixed as the fire resistance time, steel reinforcement ratio, and loading levels 267 

in all sub-figures shown, respectively.  268 

As we can see, Fig. 10a indicates that larger columns are associated with longer failure times. 269 

There is also a clear indication that the failure time is strongly associated with the level of loading. 270 

Further, Fig. 10b noted that heavily loaded RC columns tend to naturally have low fire resistance. 271 

Of these columns, all columns made from carbonate and lightweight aggregates passed the 2 hour 272 

mark and the majority exceed the three hour mark. The failure times of the columns made from 273 

silicate aggregates had a much wider range of failure times. 274 

Given the large range of reported humidity values compared to the available columns, it is quite 275 

difficult to draw clear conclusions. However, the columns with the highest humidity failed in a 276 

relatively short time. As expected, columns made with reinforcement from a low steel grade failed 277 

at shorter failure times. 278 
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 279 

(a) Effect of section size 280 

 281 

(b) Effect of loading level 282 
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 283 

(c) Effect of humidity 284 

 285 

 286 

(d) Effect of yield strength  287 

Fig. 10 Comparison between examined RC columns [Note: the value next to each data points represents the load level, and the horizontal axis 288 

represents the ratio of steel reinforcement]. 289 
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Idealized deformation response under fire conditions  290 

Based on the above comparisons, the deformation history of the fixed-fixed RC columns made 291 

from silicate aggregates can be simplified into four stages (see Fig. 11). The first stage of 292 

deformation is marked with a rise that takes place at–30-45 degrees and continues for 293 

approximately 15-20 min irrespective of the features and loading of the column. The magnitude 294 

of this deformation was small. This initial slope reduces by approximately half for columns with 295 

a steel ratio of approximately 2% and approximately a third for columns with a higher steel ratio 296 

(i.e., 4%). 297 

This rotation marks the second stage of deformation, and its magnitude and slope are tied to the 298 

available longitudinal steel and level of applied loading, wherein lighter loads lead to a slight 299 

reduction in the slope, and higher loads rotate this slope more towards the horizontal.  300 

Beyond this stage, the deformation continues to rise at a slow rate until it peaks, which could occur 301 

within a few hours. The third stage was often the longest. Such a peak marks the end of the third 302 

and the start of the final stage, after which the column shifts from an expansion mode into a 303 

contraction mode. At this stage, the rate of deformation increases until it is almost parallel to the 304 

vertical axis. This stage often lasts for 10-40% of the total fire exposure duration. In other words, 305 

once the column shifts its mode, it is likely that such a column is a near failure. For example, if 306 

this occurs at 120 min, the column is very likely to fail within the next 20-80 min. The analysis in 307 

the previous section clearly shows that the duration of each stage, as well as the associated 308 

deformations, is highly dependent on the loading level.  309 

A description similar to that outlined above can also be seen in the case of RC columns made from 310 

carbonate aggregate (despite the fact that the influence of loading is much more pronounced 311 

because all but one column were heavily loaded). The key difference between the two types of 312 

columns is that the transitions of a column made from carbonate aggregate are much smoother, 313 

implying higher endurance (longer time to failure with a minimum of an additional 75 min) under 314 

fire.  315 



This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s10694-023-01405-8.  

 

Please cite this paper as:  

Naser M.Z., Çiftçioğlu A, (2023). “Revisiting Forgotten Fire Tests: Causal Inference and Counterfactuals for Learning 

Idealized Fire-induced Response of RC Columns”. Fire Technology. https://doi.org/10.1007/s10694-023-01405-8.    

 

19 
 

 316 

(a) Demonstration of the four stages 317 

 318 

(b) Comparison between idealized columns 319 

Fig. 11 A look into idealized response under fire 320 

The above idealization sets the foundation for establishing an approach to estimate the deformation 321 

curve of RC columns. For example, looking at all the curves presented so far, we can deduce that 322 

the deformation response of RC columns under standard fire conditions is likely to follow a 323 

curvilinear trend that can best fit via a polynomial form. This idealization breaks free from the 324 
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thermo-mechanical coupling often used in fire analysis and allows an engineer to predict the 325 

deformation response without the need to perform thermal analysis, given that such a response is 326 

expected under standard fire conditions.  327 

It is likely for such an idealization to transform the fire response of RC columns, and possibly 328 

other members, into a scaling problem; wherein if a benchmark behavior is selected, then future 329 

responses of variants of such behavior can be deduced with moderate to a reasonable accuracy. 330 

Such a practice already exists and is often titled as rules of thumb. In this case, these rules of thumb 331 

were arrived at by comparing columns of identical or similar features in Figs. 1-9. The same will 332 

also be examined via casual assumptions in a later section of this paper.  333 

Thus, a standard regression analysis was conducted to derive two empirical formulas that can be 334 

used to plot the deformation history of RC columns, taking into account the loading level, 335 

reinforcement yield strength and ratio, and fire exposure time. Figure 12 shows a visual 336 

comparison of the predictivities of these formulas. As can be observed, these expressions achieved 337 

good performance metrics. With this accuracy in mind, these formulas may underestimate the 338 

deformation in the final stage of a fire exposure of 1-3 mm.  339 

Deformation history of the silicate RC columns 340 

𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 =  𝑃 +  0.0003𝑇 × 𝑆 +  7.056𝑇2 × 𝐺3  −  0.138𝑇 × 𝑃 −341 

 8.111 × 10−5 × 𝐺 × 𝑇3          (1)2 342 

MAE = 1.0 mm, R2 = 0.84. 343 

Deformation history of the carbonate and lightweight RC columns 344 

𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 =  71945.75 +  0.0002𝑇 × 𝑆 −  8.46 × 10−5 × 𝑇 2  −345 

 71946.23 × 𝑡𝑎𝑛ℎ(14.024𝑃) −  0.00056𝑃 × 𝑇2       (2) 346 

MAE = 0.40 mm, R2 = 0.96. 347 

Please note that: S: yield strength of steel (MPa), T: time under standard fire (min), P: loading 348 

level (%), and G: steel ratio (%). These expressions are verified for the columns of 305×305 349 

sections int his study. 350 

 
2 Please note that, Mean Absolute Error (MAE), and Coefficient of Determination (R 2). 
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(a) Measured response of silicate RC columns (b) Predicted response of silicate RC columns 

  
(c) Measured response of carbonate and lightweight RC columns (d) Predicted response of carbonate and lightweight RC columns 

Fig. 12 Predictivity of newly derived formulas 351 
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Data-driven ML model and analysis  352 

In an effort to maintain the theme of this paper, the results of one ML algorithm are shown herein. 353 

This algorithm is a light gradient boosted tree (LGBT) and was selected in the aftermath of a 354 

sensitivity analysis that included two more algorithms (XGBoost and Random Forest). For brevity, 355 

the results of this sensitivity analysis are not shown herein. 356 

The LGBM is a tree-based algorithm built upon the success of the original AdaBoost algorithm 357 

[22]. Unlike the Random Forest algorithm, LGBM fits the trees in a successive manner and then 358 

fits their residual errors in each iteration and focuses on those errors to improve its predictivity. 359 

The used algorithm can be found online at [23] with the following default settings: learning rate = 360 

0.05, maximum depth = “none,” number of boosting stages = 1000, etc.  361 

In addition, our dataset is healthy as it contains 9081 data points and satisfies the conditions set 362 

by: 363 

• Van Smeden et al. [24] – having a minimum set of 10 observations per feature. 364 

• Riley et al. [25] – having a minimum of 23 observations per feature. 365 

• Frank and Todeschini [26] – maintaining a ratio of 3 and 5 between the number of 366 

observations to the number of features. 367 

The LGBM was trained using collected data. First, the data were randomly shuffled and split into 368 

training (T), validation (V), and testing (S) sets. The model was trained and validated against the 369 

T and V sets and then examined on the S set. The LGBM was trained following a k-fold cross-370 

validation procedure, wherein the collected dataset was randomly split into test and training sets 371 

of k = 10 groups. The model was trained using nine sets and validated on the tenth set. This training 372 

was repeated ten times until each unique set was used as the validation set.  373 

The performance of the model was then quantified using three metrics: the Mean Absolute Error 374 

(MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). These metrics 375 

are commonly accepted in structural fire engineering publications [27,28] and are listed in Table 376 

3. MAE represents the mean average error of all observations. Thus, the low MAE values were 377 

favorable. R2 is the square of the coefficient of correlation (r) and measures the degree of 378 

association between the observed and predicted values. Higher positive R2 values indicate a strong 379 

and positive prediction capability. The RMSE describes the model errors in a scale-independent 380 

fashion, with lower values representing a high prediction capability. Finally, the behaviour of the 381 

model was visually examined and is deemed suitable as seen in Fig. 13. 382 

Table 3 List of common performance metrics.  383 

Metric Formula T  V  S  

MAE 𝑀𝐴𝐸 =  
∑ |𝐸𝑖 |𝑛

𝑖=1

𝑛
  0.371 0.322 0.282 

RMSE 𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
  0.604 0.533 0.461 

R2 𝑅2 = 1 − ∑ (𝑃𝑖 − 𝐴𝑖)
2𝑛

𝑖=1 / ∑ (𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛 )2𝑛
𝑖=1   0.981 0.982 0.982 
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E: error, A: actual measurements, P: predictions, and n: number of data points.  384 

 385 

 386 

Fig. 13 Comparison against LGBM predictions [Note: training data in red circles and validation 387 

and testing data in blue squares] 388 

Causal inference analysis 389 

Causal inference aims to identify causal relationships between variables. This inference process 390 

can be broken down into three stages: identification, estimation, and refutation. In the 391 

identification stage, a list of potential causal variables is created. In the estimation stage, these 392 

variables are constructed, and their effects on the outcome are estimated. Finally, in the refutation 393 

stage, the causal conclusion is tested by creating a list of potential confounding variables and 394 

checking whether their effects are significant.  395 

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

P
re

d
ic

te
d

 (
m

m
)

Measured (mm)

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

P
re

d
ic

te
d

 (
m

m
)

Measured (mm)



This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s10694-023-01405-8.  

 

Please cite this paper as:  

Naser M.Z., Çiftçioğlu A, (2023). “Revisiting Forgotten Fire Tests: Causal Inference and Counterfactuals for Learning 

Idealized Fire-induced Response of RC Columns”. Fire Technology. https://doi.org/10.1007/s10694-023-01405-8.    

 

24 
 

A standard causal analysis has three steps. In the first, a causal discovery process is used to uncover 396 

the underlying structure between the selected features (which can be identified from domain 397 

knowledge or physical tests). The underlying structure is then built by satisfying three causal 398 

principles, namely the Markov causal assumption, the causal faithfulness assumption, and the 399 

causal sufficiency assumption [29–31]. The Markov causal assumption states that a variable is 400 

independent of all other variables (except its own effects) conditional on its direct causes. This 401 

assumption is checked via the d-separation criterion [29], which entails whether a variable is 402 

independent of another given a third by associating independence. The casual faithfulness 403 

assumption states that a causal graph has independent relations through the d -separation criterion. 404 

The causal sufficiency assumption refers to the absence of hidden or latent parameters that we do 405 

not know nor are aware of. The readers are invited to review the following work for a detailed 406 

discussion on each of the aforenoted stages [32–34]. The readers are also to note how these three 407 

assumptions are not present in commonly adopted statistical methods, which also serves to contrast 408 

these two methods.  409 

In this paper, we carry out our causal inference analysis using the Python-based DoWhy and 410 

EconML packages. The DoWhy library [35], a Bayesian graphical model for causal inference, 411 

provides three key contributions to causal inference models. First, it provides a principled way of 412 

modeling problems as causal graphs by explicitly expressing all underlying assumptions so that 413 

they can be used later in calculations and predictions. Second, it unifies many popular methods of 414 

causal inference that use the graphical approach and potential outcomes approach to causality. 415 

Third, the model automatically checks if the estimates are valid or not (if possible) and assesses 416 

their robustness [36]. 417 

The graphical causal model (GCM) in DoWhy is a probabilistic linear graphical model that has 418 

been developed to provide a framework for representing and reasoning causal relationships. GCM-419 

based inference generates counterfactuals for future scenarios by considering what would happen 420 

if a variable changes or stays unchanged [37]. Unlike predictions via regression, which assumes 421 

the world is constant, in counterfactual prediction, specific aspects of the world are predicted using 422 

data as if the world were different. Counterfactual explanations can be used to justify forecasts of 423 

specific instances in interpretable ML. The event is what the machine has predicted to happen as 424 

a result of input values, and causes are its particular inputs that predicted this outcome [38].  425 

On the other hand, EconML [39] estimates individualized causal responses from different types of 426 

data, such as observational or experimental using a nonlinear causal model. This package is 427 

designed to allow users to easily explore the effects of various models and features on causal 428 

estimates and to provide tools for estimating average treatment effects with small samples. It 429 

provides an interface for estimating individualized causal responses from observational data, with 430 

a focus on the interpretability of estimates. It includes the estimation of the parameters of linear 431 

and nonlinear models using maximum likelihood methods, as well as an inference based on those 432 

parameter estimates [40]. A complete discussion of both of these packages can be found in their 433 

original sources cited above. 434 
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Analysis  435 

We analyze causal relationships in three different ways that all contribute to causal interpretation: 436 

linear estimation (DoWhy), EconML estimation (nonlinear), and counterfactual estimation.  437 

In order to run the causal analysis with linear estimation, we initially need to import the relevant 438 

libraries (DoWhy or EconML). We provide an estimation using the linear estimation model after 439 

identifying the causal model (see Fig. 14). Then, the treatment values are determined, and a causal 440 

model is established between the input variables, output variables, and treatments. The treatment 441 

values used the average values in each of the selected variables as obtained from our dataset of the 442 

columns examined by Lie. Finally, a refutation process that allows us to evaluate the accuracy of 443 

model predictions is carried out. This process includes three tests:  444 

• Random Common Cause: Adds randomly drawn variables to the database and re-runs the 445 

analysis to see if the causal estimate changes or not. The causal estimate shouldn’t change 446 

by much due to a random variable.  447 

• Data Subset Refuter: Creates subsets of the data and checks whether the causal estimates 448 

vary across subsets. In order to effectively measure causation, there should not be large 449 

variances in the estimates. 450 

• Placebo Treatment Refuter: Randomly assigns a variable as a treatment and re-runs the 451 

analysis. If a causal relationship exists, then the causal estimate will move toward zero. 452 

This observed data and the new value of the input in it to be changed are defined. This provides us 453 

with counterfactual values of what would happen if we changed our specified input (namely, 454 

Humidity, H, Aggregate type, A, loading level, P, yield strength of steel, S, steel ratio, G, and 455 

exposure time, T) in the observed data, with no other changes. 456 

Causal structure 457 

Our causal model (i.e., directed acyclic graph (DAG)) disregards the effects of all variables on 458 

each other and assumes that they only have an influence on the deformation history, as shown in 459 

Fig. 14. In this DAG, we assumed that all variables only have a direct causal link with the 460 

deformation history (i.e., without any inter-relation to other variables).  461 



This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s10694-023-01405-8.  

 

Please cite this paper as:  

Naser M.Z., Çiftçioğlu A, (2023). “Revisiting Forgotten Fire Tests: Causal Inference and Counterfactuals for Learning 

Idealized Fire-induced Response of RC Columns”. Fire Technology. https://doi.org/10.1007/s10694-023-01405-8.    

 

26 
 

 462 

Fig. 14 Hypothetical model [Note: T: intervention/treatment] 463 

Tables 4 and 5 list the impacts of each feature on the axial deformation (Y) from the linear and 464 

nonlinear models. It is worth noting that there is good agreement between the linear and nonlinear 465 

causal models. The analysis from the selected DAG seems to satisfy all refuting models and hence 466 

can be deemed successful. It is interesting to note that the impact of loading level and steel grade 467 

is the largest on the axial deformation of RC columns exposed to fire.  468 

Table 4 Results of the DoWhy analysis in terms of output (linear model) 469 

Treatment 

variable 

Estimate Refute 

Mean 

value 
p-value 

Random 

Common Cause 
p-value 

Data Subset 

Refuter 
p-value 

Placebo 

Treatment 
p-value 

S 5.52 - 5.12 0.06 5.65 0.56 0.023 1.24 

G 3.70 - 3.75 0.84 3.91 0.62 -0.03 1.38 

P 5.92 - 5.38 0.00 5.83 0.64 -0.01 1.46 

A 1.31 - 0.08 0.18 1.62 0.30 -0.02 1.46 

H 3.14 - 3.19 0.78 3.25 0.76 -0.0089 1.28 

 470 

 471 

 472 

 473 

Table 5 Results of the DoWhy analysis in terms of output (nonlinear model) 474 

Treatment 

variable 

Estimate Refute 

Mean 

value 
p-value 

Random 

Common Cause 
p-value 

Data Subset 

Refuter 
p-value 

Placebo 

Treatment 
p-value 

S 4.69 0.26 4.69 0.88 4.69 0.89 -0.03 0.94 

G 4.92 4.12e-05 4.92 0.92 4.93 0.96 0.038 0.92 

P 4.64 0.03 4.64 0.86 4.63 0.89 4.64 0.94 
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A 1.59 0.77 1.59 0.94 1.60 0.98 -0.008 0.89 

H 3.24 0.33 3.24 0.86 3.24 0.94 0.037 0.94 

 475 

Causal inference  476 

Now that the causal model (DAG) is verified, we can use this model to infer the deformation 477 

history under fire conditions for a variety of interventions. For the sake of this discussion, we will 478 

showcase the average change in the deformation history in columns. To simplify this process, we 479 

selected column C19 as a representative column. The average change in the deformation history 480 

of this column was then inferred when aggregates changed from carbonate to silicate when the 481 

steel reinforcement ratio is increased to 2.4%, when humidity and loading were reduced to 60%, 482 

and when the yield strength of steel increased to 414 MPa (from 340 MPa).  483 

As one can see in Fig. 15, the inferred axial responses match those identified by the rules of thumb 484 

obtained from examining the fire tests conducted by Lie et al. Overall, both the linear and nonlinear 485 

models have similar trends but can vary in the magnitude of the obtained deformation. Noting how 486 

the deformation varies in terms of a few millimeters, this difference can be neglected, and we can 487 

focus our comparison on the obtained responses. We advocate for the use of a nonlinear model 488 

given that it can provide the full deformation response as opposed to the linear model (which can 489 

only generate a discrete number of points). A future work will extend the created causal model to 490 

infer the failure and fire resistance of RC columns.  491 

 492 
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 494 

(b) When the steel reinfrcment ratio is larger than 2.4% 495 

 496 

(e) When humidity is about 60% 497 
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 498 

(f) When the load level is less than 60% 499 

 500 

(g) When the yield strength of steel increases to 414 MPa 501 

Fig. 15 Effect of possible interventions upon a typical RC column (C019) [Note: the vertical axis 502 

is different for different cases] 503 

Counterfactuals 504 

A look into Fig. 13 and Table 3 shows that the proposed formulas and the LGBM performs well 505 

and can predict the deformation history of the examined RC columns. So, formula no. 2 and the 506 

ML model were used to predict the deformation response of a randomly selected column (C19 to 507 

continue our comparison, which had carbonate aggregate, fy = 340 MPa, and P = 84.1%) if it was 508 

to be made from silicate aggregates, if it had steel reinforcement of Grade 414 MPa, and if it was 509 

subjected to a loading level of 50%.  510 
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As the reader can see, all three if-based questions are hypothetical and were not observed in the 511 

fire tests. The reader is also to note that here, we are inferring what would the deformation history 512 

of C19 be had it been made with the above features, as opposed to what is the average change in 513 

the history deformation in this column as presented in the previous section.  514 

Figure 16 shows the outcomes of the data-driven, formula, and counterfactual inference 515 

predictions. It is quite clear that the ML predictions are unlikely to be correct as they 1) do not 516 

conform to the findings noted in the previous section, 2) do not show that changing the yield 517 

strength, nor aggregate type, seem to affect the deformation response, and 3) reducing the load 518 

level from 84% to 50% while leads to more deformation; however, this deformation continues to 519 

rise awkwardly. 520 

On the other hand, the majority of formula predictions match the same rules of thumb identified 521 

earlier with the exception of the prediction for the increase in steel ratio. This is likely due to the 522 

fact that the derived formula for the RC columns of carbonate aggregate did not have as many 523 

columns with larger steel ratios (the reader is to note that the two columns with the largest steel 524 

ratios were made from silicate aggregate).  525 

Finally, the results of the causal model seem to be the most realistic of all the other presented 526 

approaches (especially throughout the full history). These results match that from the fire tests as 527 

well as inferences made in the previous section.   528 
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(a) ML predictions (b) Predictions from formulas 
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(c) Inferences from causality [using the nonlinear model]  

Fig. 16 Comparison between predictions 529 
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Conclusions 530 

This paper adopts causal inference principles to address causal and counterfactual questions 531 

pertaining to the fire response of RC columns in order to overcome the limitations of statistical 532 

and machine learning methods. The results of the conducted analysis show that the deformation 533 

history of fire-exposed columns is heavily influenced by the amount of loading level, type of used 534 

aggregates, and magnitude of longitudinal steel ratio. The following inferences can also be drawn 535 

from the findings of this study. 536 

• The thermal history of RC columns is influenced by the shape, aggregate type, and 537 

humidity, particularly after 60 min of fire exposure. The size effect seems to be minor for 538 

columns of the same concrete cover.  539 

• In general, circular columns, columns with large cross sections, and those made from 540 

lightweight and carbonate aggregate tend to have a slow temperature rise compared to their 541 

counterparts. This slow rise in temperature can be quantified at 100-200°C and on a case-542 

per-case basis. 543 

• The deformation history of the fixed-fixed RC columns can be considered to have four 544 

stages. The profile and duration of each stage are dependent on the loading level, type of 545 

aggregates used, and magnitude of the longitudinal steel ratio.  546 

• The point in time at which a column shift from expansion to contraction marks the initiation 547 

of failure.  548 

• RC columns made from silicate aggregates are likely to fail within 20-80 min of reaching 549 

the failure stage. However, fire-exposed columns made from carbonate aggregates are 550 

more likely to outperform silicate columns and fail at later times. 551 

• Data driven ML is very much likely to fail to address causal and counterfactual questions 552 

in the context of the examined phenomenon herein.  553 
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