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Abstract  

This paper presents a novel framework for the uncertainty quantification of inverse problems often 

encountered in suspended nonstructural systems. This framework adopts machine learning- and 

model-driven stochastic Gaussian process model calibration to quantify the uncertainty via a new 

blackbox variational inference that accounts for geometric complexity through Bayesian inference. 

The soundness of the proposed framework is validated by examining one of the largest full-scale 

shaking table tests of suspended nonstructural systems and accompanying simulated (numerical) 

data. Our findings indicate that the proposed framework is computationally sound and scalable 

and yields optimal generalizability. 

Keywords: Inverse problems; Machine learning; Gaussian process; Blackbox variational inference; 

Geometric complexity; Suspended nonstructural systems.  

1.0 Introduction  

To obtain accurate predictions, it is necessary to comprehensively consider various degrees of 

uncertainties [1], such as those arising from measurement uncertainty, model solution error, and 

model parameters/selection [2]. Generally, there are two types of uncertainty: aleatoric and 

epistemic [3]. Aleatoric or stochastic uncertainty describes the randomness observed in the data at 

hand. On the other hand, epistemic uncertainty, commonly referred to as system uncertainty, results 

from incomplete or incorrect information, such as limited experimental datasets or biased models.  

The complexity of uncertainty quantification models tends to increase with the availability of 

computational resources. Although this increased complexity can lead to the creation of more 

accurate models, their associated costs may not be readily justifiable over traditionally reasonable 

approximations (or surrogates) [4, 5]. With the rise of machine learning (ML) [6], surrogates have 

become attractive solvers [7]. For example, Gaussian Processes (GPs) have gained popularity in 

the supervised ML community for calibrating computer models and continue to serve as the 

foundation for contemporary methods [8]. GPs are especially well-suited for this purpose because 

they offer reliable uncertainty estimates in nonlinear systems, even with little training data. Recent 

developments have enabled more expressive GPs, despite the initial challenges with their 

scalability compared to neural networks [9, 10]. 

Derivative-free Bayesian calibration is a statistical approach used to estimate unknown parameters 

in a mathematical model without requiring knowledge of the underlying analytical derivatives of 

the model. Traditional methods for derivative-free Bayesian calibration to estimate the posterior 

distribution, such as Markov chain Monte Carlo (MCMC), typically require a series of iterationsð

often more than 104 steps to reach statistical convergence [11]. Because each forward run can be 

expensive, conducting a series of runs is computationally unaffordable, rendering MCMC 
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impractical for real-world calibration. 

To overcome this challenge, Peterson and Hinton [12] studied Variational Inference (VI) methods, 

mainly to approximate the posterior probabilities in Bayesian models. The main idea behind 

variational inference is to seek a class of simple variational distributions to approximate the true 

posterior distribution through optimization rather than sampling processes. The variational 

distribution is a collection of hidden variable distributions that adopt KL divergence (Kullback-

Leibler) as a measure of inter-distribution similarity and find the variational distribution closest to 

the true posterior distribution. Compared with Monte Carlo sampling, the variational inference 

method is faster, simpler, and easier to parallelize and hence, can be more suited for big data and 

complex models [13]. Variational inference is a popular technique in machine learning but is not 

as widely used as an MCMC-based sampling technique. In civil engineering, the slow uptake of 

VI can be attributed to its additional modeling complexity and limited theoretical exploration. 

Although the traditional mean field VI is commonly used, it requires complex mathematical 

derivations and conjugate assumptions, which limit its practical applications [14, 15].  

On the other hand, blackbox variational inference (BBVI) is a promising and advanced VI 

technique that remains largely unexplored in civil engineering [16]. BBVI does not require specific 

model derivations and can be scaled well to large datasets and high-dimensional parameter spaces. 

In contrast, MCMC-related methods are impractical for large datasets and may not scale well. 

Therefore, a combination of BBVI with O'Hagan's Bayesian calibration framework [8] can serve 

as an affordable combination; since such a combination can be easily derived without the need for 

conjugate assumptions. This enables BBVI to achieve superior results, which is critical for 

ensuring the reliability and safety of engineering systems. 

While Bayesian calibration or inference is common, the model class selection is not. Addressing 

modeling complexity remains a significant challenge for Bayesian inference applications because 

integrating metamodeling techniques is not trivial. The challenge here is to establish a fully 

automated integration process that addresses different degrees of competency for the end user and 

a wide range of application problems with a certain degree of robustness.   

Model calibration involves estimating the best-fit values for a few identifiable calibration 

parameters from experiments conducted under various control parameter settings. However, these 

models are inherently incomplete (i.e., systematically biased) and may not fully represent the 

actual system behavior. Such incompleteness may originate from various fronts, such as the 

omission of input parameters, interactions between the model input parameters and/or control 

variables, or assigning incorrect values to the model input parameters considered to be known [8]. 

This could have led to systematic discrepancies. However, such inherent discrepancies can be 

identified during model calibration by inferring an independent error model from the experimental 

data or by blending emulators with physics-based models to explain the omitted relationships 

between the model input parameters [4, 17].  

In model calibration, the goodness-of-fit of a model to the experimental data measures how well 

the model captures the data observed during calibration. However, a good fit is a necessary (but 
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not sufficient) condition, as it is possible to calibrate physics-based models to different sets of 

calibration parameter values to fit a finite set of experiments reasonably well because of the 

inevitable compensations between various sources of errors and uncertainties [18,19]. Unlike 

goodness of fit, generalizability is defined as the ability of a model to represent the reality of 

interest in all settings, including those in which experiments are not available [20]. The 

generalizability of a calibrated model is critical because computer models are most often calibrated 

to predict conditions for which experiments are unavailable.  

The complexity of a model calibration campaign results in an Ockham hill relationship between 

good fitness and a finite number of noisy measurements in the tested settings and the 

generalizability of the model predictions in the untested settings [20] (See Figure 1(a)). A model 

calibration campaign that lacks complexity could lose valuable information that could have been 

inferred from the data. However, a highly complex model is likely to fit noisy measurements, 

seemingly improving the goodness of fit while degrading its generalizability. In an extreme 

scenario, a calibration campaign that produces a model that perfectly matches all possible 

outcomes (i.e., infinite flexibility) will yield an uninformative tool that is impossible to falsify and 

one with little or no generalizability. For physics-based models, the inherent functional structure 

of the model imposes a differential ability to fit patterned data and prevents us from reaching a 

hypothetical infinite flexibility. The differential ability of a model to fit data is referred to as 

"selectivity" [21].  

 
(a) Ockham's hill relationship                      (b) Detailed example 

Figure 1 Interplay among the goodness-of-fit, complexity, and generalizability  

In Figure 1(b), we present a detailed illustration of the interplay between the model's goodness-of-

fit, generalizability, and complexity. Cutting et al. [21] recognized that the number of parameters 

alone is an insufficient indicator of model complexity and advocated for evaluating a model's 

fitting power or scope to random data. These researchers advocate evaluating the model's scope 

by comparing its ability to fit actual system data with that of random data using binomial tests. 

Similarly, complexity has also been defined as the range of data patterns that a model can fit [22].  

Pitt et al. [23] and Myung et al. [24] quantified a geometric complexity measure known as the 
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Minimum Description Length (MDL) [22, 25]. MDL is based on the understanding that the more 

data are compressed, the more information about the underlying regularities governing the process 

of interest is learned [24]. This metric considers experimental data as a code or description to be 

compressed by the model. The MDL also evaluates the model's ability to compress a dataset by 

extracting the necessary information from the data without random noise. Therefore, MDL enables 

selecting a model with the shortest description code (length) in the data [25]. In Bayesian inference 

problems, most studies overlook generalization and model complexity or use simple criteria such 

as the Akaike information criterion (AIC), Bayesian information criterion (BIC), or deviance 

information criterion (DIC). This can result in overfitting and poor generalization. We propose 

using MDL based on algorithmic information theory, Kolmogorov complexity, and geometric 

complexity measure of the data space. One of the goals of the present study is to assess the 

performance of MDL against other metrics in the case of suspended nonstructural systems (SNS).  

In recent years, moderate or strong earthquakes have caused significant property loss, interruption 

of building function, and even threatened life safety owing to damage to suspended nonstructural 

systems (SNS) [26]. Despite minor damage to the main building structures, their impact on SNS 

underscores their crucial role in ensuring the resilience of buildings against seismic events. Despite 

ongoing research efforts, the effects of ultra-large areas, long durations, and long periods under 

uncertain conditions are still unknown. Fortunately, we recently completed one of the world's 

largest full-scale suspended nonstructural system (SNS) experiments [26], in which we carefully 

designed earthquake wave inputs in line with long duration and long periods in supertall buildings, 

serve as viable candidates for use in uncertainty quantification and inverse problem inference that 

are a critical gap our study aims to fill.  

2.0 Background and literature review 

2.1 Uncertainty quantification (UQ)  

The topic of uncertainty quantification (UQ) has garnered significant interest from researchers 

across various disciplines [1]. Theoretical developments in UQ have drawn on multiple fields, 

including probability and statistics, functional analysis, and more, resulting in various 

mathematical, statistical, Bayesian, optimization, and approximation techniques [22]. To better 

understand the challenges of UQ, Stark et al. [27] distinguished between the propagation of 

uncertainty (PoU) and its inverse, as shown in Figure 2. 
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Figure 2 Classification of the main problems within uncertainty quantification 

2.2 Inverse problems (model inference/calibration)  

The inverse problem, also known as backward uncertainty propagation (Backward PoU), involves 

regression and parameter estimation from a Bayesian perspective [28]. This requires determining 

the nature of the input variable based on known observations, unlike the PoU technique, which 

determines the distribution features of the Quantities of Interest (QoI) function through the 

propagation of the input variable in the surrogate mode. 

The ill-posed inverse problem is often encountered in parametric regression, but regularization 

techniques such as Tikhonov regularization [29] can be applied to resolve such unsolved problems. 

Tarantola [30] offered a Bayesian explanation of inverse problem theory and general methods for 

model parameter estimation, whereas Engl [31] delved into the theory of regularization methods 

and their application to inverse problems. Cotter et al. [32] established a framework for Bayesian 

inverse problems on separable Banach and Hilbert spaces using Gaussian priors and discretized 

parameter spaces. Dashti [33] employed a wavelet function in L2 space to address infinite-

dimensional nonparametric regression problems. 

The measurement of posterior distributions is a key challenge in inverse problems. The Bayesian 

calibration approach, which uses posterior distributions of parameters, addresses this issue by 

defining posterior distributions over infinite-dimensional spaces using Kolmogorov's definition of 

conditional probability. Lasanen [34] extended the Bayes formula to locally convex Suslin 

topological linear spaces, and generalizations of the formula as a Radon-Nikodym derivative were 

discussed in [35]. Maximum posterior estimation is widely used for extracting information from 

the posterior distribution because it connects the Bayesian technique with traditional regularization 

functions [35]. The most common approach for sampling the posterior distribution is the MCMC 

method, which constructs the probability of transition between the prior and posterior distributions. 

The open literature presents other methods with thorough analyses of Bayesian computation 

techniques for parametric models [36] and infinite-dimensional spaces [37]. 

2.3 Surrogate models 

A surrogate model approximates a complex system and is typically a mathematical expression or 
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algorithmic description of its inner relationships. Data-driven surrogates, such as artificial neural 

networks, radial basis functions, support vector machines, and Gaussian processes (GPs), are 

commonly used nowadays [38]. 

Gaussian processes (GPs) are nonparametric Bayesian models of interest in this study [39]. 

According to Rasmussen and Williams [40], any finite function sample follows a multidimensional 

Gaussian distribution, with the QoI function viewed as a specific sample of a Gaussian process. 

The Gaussian process is the response function's probability distribution, making it a flexible model 

for many applications. Rasmussen and Williams [40] explored the relationship between GPs and 

other models, such as regularization methods, and applied GPs theory to machine learning. 

Hyperparameters of the GP model are typically estimated using maximum likelihood estimation 

(MLE) or Bayesian information criterion (BIC) criteria, with posterior distributions of 

hyperparameters often sampled using MCMC methods in applications sensitive to parameter 

uncertainty. 

Gaussian Processes (GPs) provide a powerful tool to model complex systems due to their ability 

to capture uncertainty and avoid overfitting. The expressiveness of a kernel function plays a crucial 

role in determining the complexity of single-layer GP models. Recent advances in GP research 

have applied these to sparse variational inference, enabling efficient computation for large datasets. 

The induction point approach and expectation propagation have been employed to infer deep GPs 

with sparsity [41]. Moreover, a novel inference method based on the induction point using the 

accurate model as the variational posterior distribution has been proposed to improve model 

accuracy further [42]. Furthermore, the doubly stochastic variational inference technique has been 

applied to deep GPs, combining random sampling and stochastic inference to improve the 

independence assumption and variance estimation of implicit function variables.  

3.0 A novel framework for machine learning-based data and model driven uncertainty 

quantification of inverse problems  

3.1 Proposed Framework  

Figure 3 summarizes our proposed framework. The model-driven approach involves using finite 

element numerical modeling to simulate data via experiments, providing a large dataset to train 

the data-driven, machine learning based surrogate model. This approach is used to solve forward 

problems. The data-driven (machine learning-driven) approach involves sensitivity analysis and 

training the surrogate model with both full-scale observations (experimental) data and simulated 

data to solve the inverse problem of Uncertainty Quantification (UQ) for SNS systems, which 

often have uncertain parameters, including initial and boundary conditions, material properties, 

and geometry, that can vary in space or time [43, 44]. In the new approach, we propose a new 

blackbox (non-conjugate) variational inference method combined with O'Hagan's Bayesian 

calibration framework and embed geometric complexity measure MDL model selection to enhance 

the accuracy, efficiency, and robustness of both forward and inverse problems with generalization 

capabilities. In the next following sections, we will provide a detailed description of the methods 

used in our framework.  
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Figure 3 Framework of machine learning-based data & model driven UQ of inverse problems 

3.2 Machine Learning-based Gaussian Process surrogate model  

3.2.1 Gaussian process surrogate model 

We define the expectation and covariance of a real-valued GP f(x), m(x), and k (x, xǋ). The GP can 

be expressed as: 

 Ὢὼ  ͯὋὖάὼȟὯὼȟὼ   Ὃὖ Ὢὼ ȟ Ὢὼ άὼ Ὢὼ άὼ    (1)   

Assuming that each observation is mapped using an unknown function f(x) with independent 

Gaussian noise in Equation (2) and the correlation of the observations of the inputs ὼ, ὼ: 

Ù Ὢὼ ‭ ȟ  ὧέὺώȟώ Ὧὼȟὼ ‏„       (2) 

where ŭpq is the Dirac function when p = q, ŭpq = 1, otherwise ŭpq is 0. Then, we can get marginal 

likelihood ὖώȿὼ directly from the prior Ùͯ.πȟὑ ʎὍ:  

ὰέὫὴώȿὼ  ώ ὑ „Ὅ ώ ÌÏÇȿὑ „Ὅȿ ÌÏÇ ς“       (3)  

3.2.2 Optimization of hyperparameters in GPs models 

Choosing the appropriate hyperparameter is crucial as it determines the specific form of the kernel 

function. For example, in the one-dimensional squared exponential covariance function1: 

Ὧ ὼȟὼ „ÅØÐ ὼ ὼ ‏„           (4) 

where, ὰȟ„ȟ„  are hyperparameters in kernel functions. The model's generalization ability is 

impacted by various hyperparameters. Here, we use the maximal marginal likelihood method to 

 
1 The subsequent study of SNS in this article will use this covariance function after optimization of kernel selection. 
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optimize the hyperparameters, and from equation (5), we can attain the logarithmic form of 

ὴ ώȿὼȟ— with hyperparameters represented by the vector ɗ explicitly. To maximize the marginal 

likelihood, its partial derivative form for each hyperparameter is: 

ὰέὫὴώȿὼȟ— ώὑ ὑ ώ ὸὶὑ ὸὶ‌‌ ὑ      (5) 

where, tr(·) is the trace of the matrix, ‌ ὑ ώȟ ὑ  determines the computational complexity 

of (5), Once Kī1 is obtained, it has a gradient complexity of O(n2) for hyperparameter —.  

3.3 Bayesian inference  

Bayesian inference provides an approach to the estimation or calibration of a set of parameters 

 in a model (or hypothesis) H for the data D. It is based on a likelihood function derived from a 

specific probability model of the observed data ὒ╓ȿ , where  is stochastic, it has a prior “—. 

The inference is based on the posterior “—ȿὈ as obtained by Bayes' theorem:  

0Òȿ╓ȟὌ
╓ ȟ( Ὄ

╓(  ȟ0Ò╓ȿὌ 0᷿Ò╓ȿȟ(0ÒȿὌ Ὠ         (6)  

where  represents the tensor of uncertain parameters to be estimated, and D represents the tensor 

of the observations or measurement data to calibrate or estimate our knowledge of . H represents 

the model or hypothesis which is believed to best represent the available D. Pr(D|H) ſ Z is the 

Bayesian evidence that serves as the normalizing constant of the posterior. The Bayesian evidence 

factor can be ignored in the estimation process since it is independent of the parameters Ū, and 

inferences are obtained by computing or sampling the unnormalized posterior [45].  

3.4 Bayesian calibration  

A statistically descriptive model calibration procedure [45] uses Bayesian inference to model the 

relationship between computer simulations and observed data y, while considering parameter 

uncertainties, model discrepancy, and observation error.  

ώὼ –ὼȟὸᶻ ὼ‏ ‭          (7) 

where, ώὼ and –ὼȟὸᶻ  are the observation data and simulation output, respectively. ŭ(x) is the 

discrepancy/bias term accounting for model inadequacy between simulation and physical system 

at input x. Inadequate, missing physics, and numerical errors in the code could be the cause of this 

inadequacy. ‭ describes observational data variation, and it is often assumed to have a Gaussian 

distribution. And t* represents the true but unknown values of the calibration parameters t.  

3.5 Variational inference  

In complex, high-dimensional problems, such as those encountered in suspended nonstructural 

systems, stochastic sampling techniques are used to draw samples from unnormalized distributions 

when the analytical solution of ὖὶ◙ȿ╓ȟὌ  is not easily obtained. MCMC schemes, including 

Gibbs sampling and Metropolis-Hastings, cancel out the Bayesian evidence Z during single-
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sample computation. MCMC is an irreducible, aperiodic Markov chain that meets detailed balance 

conditions, and the Kullback-Leibler(KL) divergence monotonically decreases during Markov 

transition, according to standard theory [46]. MCMC sampling can achieve convergence to the 

true posterior with infinite samples, but it is slow and unbiased. Variational inference is a popular 

indirect approximation method [15] that minimizes the distance measure KL divergence between 

approximate and posterior distributions. This method avoids the calculation of the normalization 

constant and only requires the joint distribution of observable and latent variable x, z. Compared 

to MCMC, variational inference is a computationally efficient optimization method for variable 

posterior distributions [16]. It transforms inference into an optimization problem by selecting an 

easy-to-handle distribution q(x) that closely approximates the true posterior distribution. 

3.5.1 Inference and optimization  

In variational inference, the goal is to find an easy-to-handle distribution q(z) that approximates 

the posterior distribution ὴᾀȿὼ and calculates the marginal probability ὴὼ of the observed 

variable. The inference problem is turned into an optimization problem by minimizing the distance 

measure between the variational distribution and the posterior distribution. This optimized 

variational distribution ήᾀȟ‗ can be used instead of the posterior distribution, and ‗ is used to 

represent the variational parameters.  

Definition 3.1 For the probability distributions p(z) and q(z), the KL divergence distance between 

them is defined as: 

$ ήᾀȿȿὴᾀ  ή᷿ᾀÌÏÇὨᾀ               (8) 

3.5.2 Variational lower bound 

To minimize KL divergence, special treatment of the "evidence term" and "model conditional" 

ὴᾀȿὼ is required. However, MCMC may not efficiently approximate this treatment. Instead, we 

can use ELBO (Evidence Lower Bound Objective) as a maximized log-likelihood variational 

lower bound, which is a conservative estimate of the marginal distribution and can indicate how 

well the data distribution ὴὼ fits the model. 

Definition  3.2. With Jensen inequality, we can briefly derive the variational lower bound ELBO 

from the log-likelihood log p(x), and the distance measured between its logarithmic marginal 

distribution and the ELBO is the KL divergence distance between variational distributions:  

ὰέὫὴὼ ὰέὫ Ƞ  

ὴὼȟ‗

ήᾀȠ‗ȿὼ
 

ήᾀȠ‗ὰέὫ
ὴᾀȟὼ

ήᾀȠ‗
Ὠᾀ ήᾀȠ‗ὰέὫ

ὴᾀȿὼ

ήᾀȠ‗
Ὠᾀ 

Ὁὒὄὕή Ὀ ήᾀȠ‗ȿȿὴὼȟᾀ  

 

 

 
Ƞ ὰέὫ

ȟ

Ƞȿ
Ὁὒὄὕή by Jensen's inequality                   (9) 
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Maximizing ELBO is equivalent to minimizing Ὀ ήᾀȿὼȿȿὴᾀ , which requires a simple and 

expressive variational distribution q(z) to approximate the posterior distribution. A common choice 

is the Mean-Field Distribution. Traditional variational inference requires an explicit calculation of 

ELBO, which is only possible for directly conjugated variables. However, newer methods do not 

require this and are preferred in this study [46]. 

3.5.3 Blackbox (non-conjugate) variational inference 

In traditional variational inference, ELBO can only be explicitly calculated and optimized for 

conditionally conjugated exponential family distributions, leading to unsolvable expectation 

calculations for most models. To extend variational inference to non-conjugate cases and automate 

the process, the blackbox Variational Inference (BBVI) [16] is proposed, allowing unbiased 

estimation of the variational parameter gradient by sampling from the variational distribution. This 

method is a more general inference method that does not constrain the probability distribution of 

intermediate variables. ELBO is maximized through updates based on the gradient or stochastic 

gradient of variational parameters, expressed as the expectation of the variational distribution:  

ᶯὒ ᶯὰέὫήᾀȿ‗ ÌÏÇὴὼȟᾀ ὰέὫήᾀȿ‗        (10)  

For gradients ɳ ὒ, stochastic gradient calculation can also be used to sample from the variational 

distribution and estimate gradients as follows: 

ᶯὒ  В ᶯὰέὫήᾀȿ‗ ÌÏÇὴὼȟᾀ ὰέὫήᾀȿ‗      (11) 

where ᾀ ήͯᾀȿ‗ , the proposed variational inference method provides a black box gradient 

estimation technique, requiring sampling of K samples from observed and hidden variables instead 

of explicit calculation of ELBO gradients. This calculation can be implemented using commonly 

available deep learning methods, which are used in the subsequent SNS analysis. 

3.6 Design of experiments  

Experimental design [48] can be divided into model unknown and model known designs [49]. In 

the study of SNS systems, we will use the Latin hypercube sampling (LHS) method for sampling, 

which produces a more uniform distribution in the parameter space than the MC method. Taking 

the sampling of the random vector x Ḑ U ([0, 1] d as an example, the LHS method is divided into 

the following three steps: Step 1: Divide [0, 1] on each dimension into N equal parts, N is the 

number of samples, and construct Nd small hypercubes, written as Ãᴁᴁ , where É ÉȟȣȟÉ  

is a D-dimensional indicator and ᴁὭᴁ В Ὥ; Step 2: Select N Ã so that the indicators ÉȟὭ of 

any two small hypercubes satisfies: É ὭȟὮ ρȟȣȟὨȠ Step 3: In each selected small hypercube, 

a random sample is taken according to a uniform distribution, and its setting is the desired sample 

set. It should be noted that although the number of constructed small hypercubes Nd increases 
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exponentially with dimension d, the computational complexity of Step 2 can be reduced to O(dN) 

through algorithmic optimization. 

3.7 Sensitivity analysis and model selection  

3.7.1 Sensitivity analysis  

Sensitivity Analysis (SA) is a key component of UQ that measures the impact of perturbations on 

the QoI function y(x, ɗ) in terms of mean, variance, distribution, and information entropy. This 

analysis helps to minimize QoI uncertainty and control variables. Local SA involves 

approximating the model using a Taylor expansion, while global SA can be done using screening 

or variance decomposition methods. Screening identifies variables with a significant impact on 

QoI uncertainty, while variance decomposition quantifies the proportion of each variable's impact. 

SA is also related to model selection, and variance-based methods are typically more applicable 

for global sensitivity analysis. In this study, we will use the variance-based sensitivity analysis 

method described in [49] to analyze subsequent SNS. 

3.7.2 Minimum description length model selection  

According to Sober [50], informative models are less complex. Kuhn [51] also noted that simpler 

models are preferable to complex ones. Turney [52] demonstrated that simpler models are more 

stable (robust) in the face of experimental uncertainty. Model selection criteria (listed in Table 1) 

aid in comparing alternative calibration campaigns by considering goodness-of-fit and complexity.  

Table 1 Widely used model selection metrics 

Selection Metric Criterion Equation  

Akaike information criterion (AIC) ὃὍὅ ςz ÌÎὪώⱣ ςὯ 

Bayesian information criterion (BIC) ὄὍὅ ςz ÌÎὪώⱣ ςὯz ÌÎ ὲ 

Deviance information criterion (DIC)  ὈὍὅὈⱣ ὴ  

Information-theoretic measure of 

complexity (ICOMP) Ὅὅὕὓὖ ÌÎὪώⱣ
Ὧ

ς
ÌÎ
ὸὶὥὧὩ♦Ᵽ

Ὧ

ρ

ς
ÌÎÄÅÔ♦Ᵽ   

Minimum description length (MDL) ὓὈὒ ÌÎὪώⱣ
Ὧ

ς
ÌÎ
ὲ

ς
ÌÎ᷿ÄÅÔ╘Ᵽ Ä—  

Note: y = data function; n =sample of size; Ᵽ = parameter value that maximizes the likelihood function   ὪώȿⱣ; k 

=  number of parameters; D is the deviance of the likelihood, ὈⱣ ςz ὰέὫὪώⱣ ; ὴ ὈⱣ Ὀ—Ӷ, Ὀ— 

is the expectation of ὈⱣ and —Ӷ is the expectation of  ⱣȠ  = covariance matrix of the parameter estimates; ln= the 

natural logarithm of base e. 

MDL [22] is a geometric complexity model selection metric that compresses the experimental data 

to evaluate models based on their ability to extract necessary information from the data without 

random noise. The metric favors models with shorter description codes of the data [51,52], 

allowing for greater learning of underlying regularities governing the process of interest [24]. 

Using the concept of Normalized Maximum Likelihood, Rissanen further demonstrated the 

redundancy of the observation model has the asymptotic optimal lower bound of Minimax [53]: 
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ÉÎÆÓÕÐ
ᶰ  
+ɀ, ÑȟÆ ÌÏÇ ÌÏÇ᷿ ÄÅÔὍ—Ὠ— ὕρ        (12)   

where, ɗ is a compact subset of the parameter space Ū, k represents the number of parameters 

entering the model, I(ɗ) is the Fisher information matrix of the parameter distribution, and an 

expectation defines it )
Ὀ—

 over the parametric model Æὼ . It rigorously 

shows that model complexity estimates must approach the lower bound progressively and has good 

generalizability [49] because it does not assume knowledge of the true data distribution or make 

specific assumptions about the observed data distribution. In section 5, we will thoroughly 

compare the MDL approach with other model selection criteria, including AIC, BIC, DIC, and 

ICOMP.  

4.0 SNS shaking table experiments  

4.1 SNS shaking table experiment configurations   

To validate our proposed framework, we utilized a recent large-scale shaking table experiment that 

we conducted in [26], with a brief summary presented herein for completion. Our experiment 

investigated the seismic effects of nonstructural systems under various seismic input wave 

conditions [54]. Suspended nonstructural systems, consisting of a suspended ceiling system and a 

suspended cable tray system, were tested using a steel platform. This platform, the largest of its 

kind to date, is two stories high, measuring 5.40 m in height, 12.84 m in length, and 11.64 m in 

width. During the test, the systems were suspended from the platform (see Figure 4).  

 
Figure 4 View of steel platform and suspended ceiling and cable tray systems [26]. 

4.2 Loading protocol  

To accurately simulate the long duration and long period seismic input experienced by supertall 

buildings, the test specimen was loaded with various frequencies after analysis (see Table 2 for a 

comprehensive list of all the motions tested [26]). Following each run, white noise with a PGA of 

0.05 g was input to the specimen to evaluate its dynamic characteristics. The shaking table was 

subjected to several sets of motions, including sweep waves (Sweep), acceleration responses 

obtained by stochastic time history analysis at different floors of building structures, and artificial 
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waves (BCJ-L2).  

The sweeping wave in Figure 5(b) is a sine wave oscillating with a frequency range of 6.0 Hz to 

0.8 Hz. The PFA at the floor level of the platform is presented in Table 2. Three input motions were 

selected for analysis, namely SHW6 (5/128), SHW6 (128/128), and SHW6 (30/30) (see Figure 

5(a)). These motions represent the acceleration responses at the 5th floor and the top of a 128-story 

supertall structure model and the acceleration responses at the top of a 30-story stick model 

subjected to the ground motion SHW6 with PGA of 0.1 g, respectively [26]. The natural vibration 

periods of the first three modes of the 128-story model are 8.94 s, 8.93 s, and 4.48 s, respectively. 

The corresponding results of the 30-story model are 3.01s, 1.18 s, and 0.72 s, respectively. The 

characteristic period of ground motion SHW6 is 0.9 s. The PFA of SHW6 (128/128) is 1.7 times 

that of SHW6 (5/128). The fundamental period of the 30-story model is closer to the characteristic 

period of the ground motion SHW6 than that of the 128-story model; therefore, the PFA of SHW6 

(30/30) is larger than that of SHW6 (128/128).  

Table 2 Details of motions input to specimen [26] 

Run No.1) Name of input motion 
Target acc. of the table (g) 

Duration (s) 
PFA of the platform (g) 

X dir. Y dir. X dir. Y dir. 

2 Sweep 0.050 0 100 0.071 - 

4 Sweep 0 0.050 100 - 0.087 

6 Sweep 0.050 0.050 100 0.069 0.087 

8 BCJ-L2 0.037 0 120 0.050 - 

10 BCJ-L2 0 0.037 120 - 0.057 

122) SHW6 (5/128) 0.089 0.070 70 0.127 0.098 

142) SHW6 (128/128) 0.149 0.132 70 0.146 0.153 

162) SHW6 (30/30) 0.405 0.377 150 0.571 0.573 

18 Sweep 0.150 0 100 0.225 - 

20 Sweep 0 0.150 100 - 0.242 

22 Sweep 0.150 0.150 100 0.232 0.277 

24 Sweep 0.250 0 100 0.393 - 

26 Sweep 0 0.250 100 - 0.512 

28 Sweep 0.350 0 100 0.572 - 

30 Sweep 0 0.350 100 - 1.942 

32 Sweep 0.500 0 100 1.319 - 

Notes: 
1) Runs of odd numbers used for white-noise excitation with small magnitude are not listed in the table. 
2) During Runs 12 and 14, the floor acceleration responses at the 5th and 128th floors of the 128-story building subjected 

to the ground motion SHW6 are input, and during Run 16, the floor acceleration response at the 30th floor of the 30-

story building is input.  
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(a) The 128-layer Benchmark (left) and 30-layer Stick (right) model of floor wave  
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(b) Acceleration time history curve of the Sweep wave 

Figure 5 Schematic of partial motions of input 

 

4.3 Type C general information  

As a case study, we selected one of the SNS experiments, the type C Suspended Ceiling System 

(SCS), to test our proposed uncertainty quantification methodology. This SCS consists of a single 

suspended ceiling with a complete semi-free boundary constraint condition, as depicted in figure 

6. The suspended ceiling covers an area of 150 m2 and is currently the largest ceiling worldwide. 

 
Figure 6 SCS type C [26] 
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4.4 Instrumentation   

This specimen was instrumented with 236 instruments, including 30 accelerometers (A1-A30), 40 

displacement transducers (D1-D40), and 166 strain gauges (S1-S166) to measure the dynamic 

response of the ceiling (see Figure 7). The accelerometers measured the absolute acceleration, 

whereas the displacement transducer measured the displacement of the ceiling relative to the 

platform.  

 
Figure 7 Instrumentation on the ceiling [26]. 

Notes: displacement transducer; accelerometer; strain gauge on the threaded rod; strain gauge on lay-in 

panel; strain gauge on the cross tee and sub cross tee; strain gauge on carrying channel. 

4.5 Boundary conditions  

The boundary conditions for the SCS are shown in Figure 8 [26]. The system has a semi-free 

boundary on sides 1 to 4, with main tees and sub-cross tees attached to the wall angles on side 1 

and cross tees attached to the wall angles on side 2. Sides 3 and 4 have the same boundary 

conditions as sides 1 and 2. 

 
Figure 8 Composition of double-layer SCS [97].  




