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Abstract

This paper presents a novel framework fortheertainty quantification of inverse problems often
encountered insuspended nonstructural systems. This framework adopts machine learming
modeldriven stochastic Gaussian process model calibration to quantify the uncertainty via a new
blackbox varigional inference that accounts for geometric complexity through Bayesian inference.
The soundness of the proposed framework is validated by examining one of the largestédull
shaking table tests of suspended nonstructural systedeccompanying sinated (numerical)

data. Our findings indicate that the proposed framewodoisputationally sound and scalable
andyields optimal generalizability.

Keywords Inverse problems; Machine learning; Gaussian process; Blackbox variational inference;
Geometriccomplexity; Suspended nonstructural systems.
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2.0 Background and literature review

2.1 Uncertainty quantification (UQ)
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role in determining atylre c&FPmpoaxiltsy Reec&mnalglaa
have applied these to sparse variational iinfer
The induction point approach and expectation

with sparsity [41]. Moorde olbvaesre d ao nn otvled ii md wea tein
accurate model as the wvariational posterior

accuracy further [42]. Furthermore, the doubl"
applied tombdeepngPseandomm sampling and stocha
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3.0 A novel framework for machine learning-based data andmodel driven uncertainty
guantification of inverse problems

3.1 Proposedrramework

Figure 3summarize®ur proposedramework The modeldriven approaclnvolvesusing finite
element numerical modeling to simulate dataexperiments, providing a large dataset to train
the datadriven,machine learningpased surrogate model. This approach is used to solve forward
problems.The datadriven (machine learninglriven) approach involvesensitivity analysis and
training the surrogate model with both fattaleobservationsgxperimentgldata and simulated
datato solve the inverse problem of Uncertainty Quantification (UQ) for SNS systems, which
often have uncertain parametargluding initial and boundary conditions, material properties,
and geometry, that can vary in space or tjg®s 44] In the new approagtwe propose a new
blackbox (non-conjugate) variational inference method combined with O'Hagan's Bayesian
calibrationframework and embegeometric complexity measukDL model selection to enhance

the accuracy, efficiency, and robustness of both forward and inverse problems with generalization
capabilities In the next following sections, we will provide a detailed digsion of the methods
used in our framework



This is a preprint draft. ffe published article can be found fatps://doi.org/10.1016/j.ress.2023.109392

Please cite this paper as:

Qin, Z.,Naser M.Z.(2023).Machine Learning and Model Driven Bayesian Uncertainty Quantification in
Suspended Nonstructural SysténRReliability Engineering and System Safety
https://doi.org/10.1016/j.ress.2023.109392

MDL tri
Sensitivity Analysis geo'me L
complexity

Data(ML) driven )

Uncertainty Prior

Numerical § Machine learning-based
Model G.P. Surrogate Model

Model driven Observations data

Design of experiments

Uncertainty Posterior

Black Box Variational Inference
0'Hagan's Bayesian calibration
MDL geometric complexity

Figure3 Framework oimachine learningpaseddata & model driven UQ of inverse problems

3.2 Machine Learnindgpased Gaussian Process surrogate model

3.2.1 Gaussian process surrogate model

We define the expectation and covariance of avelled GH(x), m(x) andk  ( XThe GPNgn .
be expressed as:

"Qex "00a & hQahm OOM QO M Qo a0 Qe G © (1)

Assuming that each observation is mapped using an unknown fufictjonith independent
Gaussian noise Equation @) and he correlatiorof the observations of theputsw , @ :

U Qo [ roé o Qo 1 (2)

w h e pqés thé Dirac function whep=q,lg= 1, 0 tpdiseOr Tiven,sve caf get marginal
likelihood 0« directly from the prioty . ) A O

o ¢ Qi -0 0, 0w -l ,Q -11¢ 3)
3.2.2 Optimization of hyperparameters in GPs models

Choosing the appropriate hyperparameter is crucial as it determines the specific form of the kernel
function. For example, in the omémensional squared exponential coaace functiot:

Mok , AGb— o o w1 4)

where,ch, i, are hyperparameters in kernel functions. The model's generalization ability is
impacted by various hyperparameters. Here, we use the maximal marginal likelihood method to

1 The subsequent study of SNS in this article wék this covariance function after optimization of kernel selection.
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optimize the hyperparameters, and from equation (5), we can attain the logaridhmioff
N wh— with hyperparameters represented by the vabexplicitly. To maximize the marginal
likelihood, its partial derivative form for each hyperparameter is:

—a ¢ dgh— -0 —U ® -0ivL — -0l v — (5)

where,tr(-) is the trace of the matrix, 0 «h0 determines the computational complexity
of (5), OnceK' 1 is obtained, it has a gradient complexityQ(f¥) for hyperparametes-

3.3 Bayesian inference

Bayesian inference provides an approach to the estimation or calibration of a set of parameters
in a model (or hypothesi$j for the dateD. It is based on a likelihood function derived from a

specific probability model of the sbrved daté s , where is stochastic, it has a pribr —.

The inference is based on the posteticrsO asobtained by Bayes' theorem:

0 O srfio I r(rr( OFoqrs'o L0Qs i 00s07Q (6)

where represents the tensor of uncertain parameters to be estimat&lreprésents the tensor

of the observations or measurement data to calibrate or estimate our knowledgerepresents

the model or hypothesis which is believed to best represent diilatdeD. Pr(D| H) idtheZ
Bayesian evidendhatserves as the normalizing constant of the postdriar.Bayesian evidence
factor can be ignored in the estimation procssse it is independent of the parametgrsand
inferences are obtained by computing or sampling the unnormalized posterior [45]

3.4 Bayesian calibration

A statistically descriptive model calibration procedure [45] uses Bayesian inference to model the
relationship between computer simulations and observed data y, while considering parameter
uncertainties, model discrepancy, and observation error.

Oo - ] e T @)

where ® @ and— ofY are the observation data and simulation output, respecti¥g)yis the
discrepancy/bias terccountingor model inadequacy between simulation and physical system

at inputx. Inadequatemissing physicsandnumerical errors in the code could be the cause of this
inadequacy. describes observational data variation, and it is often assumed to have a Gaussian
distribution. Andt* represents the true but unknown values of the calibraticanpeterg.

3.5 Variationalinference

In complex, highdimensionalproblems, such as those encountered in suspended nonstructural
systems, stochastic sampling techniques are used to draw samples from unnormalized distributions
when the analytical solutivof0 ‘l@gn-ﬁ"O Is not easily obtainedMCMC schemes, including

Gibbs sampling and Metropolldastings, cancel out the Bayesian evidedcduring single
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sample computation. MCMC is an irreducible, aperiodic Markov chain that meets detailed balance
conditions, and th&ullback-Leibler(KL) divergence monotonically decreases during Markov
transition, according to standard theo#y]] MCMC samping can achieve convergence to the
true posterior with infinite samples, but it is slow and unbiased. Variational inference is a popular
indirect approximation method ] that minimizes thelistance measure Kdlivergence between
approximate and posteridistributions. This method avoids the calculation of the normalization
constant and only requires the joint distribution of observable and latent vagiab{@ompared

to MCMC, variational inference is a computationally effici@ptimization method for variable
posterior distribution§l6]. It transforms inference into an optimization problem by selecting an
easyto-handle distributiory(x) that closely approximates the true posterior distribution.

3.5.1 Inference andptimization

In variational inference, the goal is to find an etshandle distributiorg(z) that approximates

the posterior distribution ¢ and calculates the marginal probabilityw of the observed
variable. The inference problem is turned into an og@tnon problem by minimizing the distance
measure between the variational distribution and the posterior distribution. This optimized
variational distributiom) ah_ can be used instead of the posterior distribytéonl_is used to
represent the varianal parameters

Definition 3.1For the probabilitydistributionsp(z)andq(z), the KL divergence distance between
them is defined as:

$ nawa Lnal -4 (8)

3.5.2 Variational lower bound

To minimize KL divergence, special treatment of the "evidence term” and "model conditional”
N aw is required. However, MCMC may not efficiently approximate this treatment. Instead, we
can use ELBO (Evidence Lower Bound Objective) as a maximizetlkelghood variational
lower bound, which is a conservative estimate of the marginal distributioraanddicate how

well the data distributiony @ fits the model.

Definition 3.2. With Jensen inequality, we can briefly derive the variational lower bound ELBO
from the loglikelihood log p(x), and the distance measured between its logarithmic marginal
distribution and the ELBO is the KL divergence distance between variational distributions:

n ah

A L

L e L . Anw o, SR § (0. O R
a as%‘,—Qa a ors?ll,‘—Qa
n arL o .vn.fL o .

0068 O ndL ) wa

a £fQo a £VQ

M nat -9% ‘00 6 § by Jensen's inequality (9)
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Maximizing ELBO is equivalent to minimizin®@ 1 asw s a , which requires a simple and
expressive variational distributigyfz)to approximate the posterior distribution. A common choice
is the MearField Distribution. Traditional variational inference requia@explicit calculation of
ELBO, which is only posble for directly conjugated variables. However, newer methods do not
require this and are preferred in this study [46].

3.5.3 Blackbox (nowonjugate) variational inference

In traditional variational inference, ELBO can only be explicitly calculated gmidnized for
conditionally conjugated exponential family distributions, leading to unsolvable expectation
calculations for most models. To extend variational inference tacanjugate cases and automate

the process, thélackbox Variational Inference (BBN [16] is proposed, allowing unbiased
estimation of the variational parameter gradient by sampling from the variational distribution. This
methodis a more general inference method that does not constrain the probability distribution of
intermediate varisles ELBO is maximized through updates based on the gradient or stochastic
gradient of variational parameters, expressed as the expectation of the variational distribution:

n) M naéQy I InQ@h aé Qg (10)

For gradientd 0, stochastic gradient calculation can also be used to sample from the variational
distribution and estimate gradients as follows:

n o -B naé¢as I in@m ¢ ars (11)

whereax n as_ , the proposed variational inference method provides a black box gradient
estimation technique, requiring sampling<adamples from observed and hidden variables instead
of explicit calculation of ELBO gradients. This calculation can be implemented csmmonly
available deep learning methods, which are used in the subsequent SNS analysis.

3.6 Design of experiments

Experimental design [48] can be divided into model unknown and model known designs [49]. In
the study of SNS systems, we will use the Lagpercube sampling (LHS) method for sampling,
which produces a more uniform distribution in the parameter space than the MC method. Taking
the sampling of the random vectoP U ([0, 1] ¢ as an example, the LHS method is divided into
the following three stepsStep 1 Divide [0, 1] on each dimension inté equal partsN is the
number of samples, and constritsmall hypercubes, written a8 .. , whereE EB hE

is a Ddimensionaindicator and#@ B  "Q Step 2:Select NA so that the indicatofSHQ of

any two small hypercubes satisfigs: "OhQ phB FStep 3In each selected small hypercube,

a random sample is taken according to a uniform distribution, asetiisg is the desired sample

set. It should be noted that although the number of constructed small hypex€ubeseases

10
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exponentially with dimensiod, the computational complexity &tep2 can be reduced t©(dN)
through algorithmic optimization.

3.7 Sensitivity analysis and model selection

3.7.1 Sensitivity analysis

Sensitivity Analysis (SA) is a key component of UQ that measures the impact of perturbations on
the Qol functiony ( x in temh¥ of mean, variance, distribution, and information egtrdpis
analysis helps to minimize Qol uncertainty and control variables. Local SA involves
approximating the model using a Taylor expansion, while global SA can be done using screening
or variance decomposition methods. Screening identifies variableswitinificant impact on

Qol uncertainty, while variance decomposition quantifies the proportion of each variable's impact.
SA is also related to model selection, and varidrased methods are typically more applicable

for global sensitivity analysis. Ithis study, we will use the variantased sensitivity analysis
method described in [49] to analyze subsequent SNS.

3.7.2 Minimum description length model selection

According to Sober [50], informative models are less complex. Kuhn [51] also notedripbrsi
models are preferable to complex ones. Turney [52] demonstrated that simpler models are more
stable (robust) in the face of experimental uncertainty. Model selection criteria (listed in Table 1)
aid in comparing alternative calibration campaignsdnsaering goodnessi-fit and complexity.

Table 1 Widely used model selection metrics

Selection Metric Criterion Equation
Akaike information criterion (AIC) 006 ¢zl MoP ¢Q
Bayesian information criterion (BIC) 606 ¢zl QWP el 1¢
Deviance information criterion (DIC) 006 OP 1
Informationtheoretic measure of e e s Q 0l OheR P v o A
Minimum description length (MDL) 00U I MwP —1 IE i 1 AABP A—

Note:y = data functionn =sample of size? = parameter value that maximizes the likelihood functi®xueP ; k
= number of parameterB;is the deviance of the likelihoo@ P ¢za ¢ QP ;N op oO-fo—

is the expectation d® P and-lis the expectation 0PI = covariance matrix of the parameter estimates; In=
natural logarithm of base e.

MDL [22] is a geometric complexity model selection metric that compresses the experimental data
to evaliate models based on their ability to extract necessary information from the data without
random noise. The metric favors models with shorter description codes of the data [51,52],
allowing for greater learning of underlying regularities governing the psooé interest [24].

Using the concept of Normalized Maximum Likelihood, Rissanen further demonstrated the

redundancy of the observation model has the asymptotic optimal lower bound of Minimax [53]:

11
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ElCeE, \WE -1T-€¢ 11.CAR@®-Q—0 p (12)

where i a compact subset of the parameter spac
entering the model, I ( d) is the Fisherani nf or |
expectation defines jt e over the parametric modé&t @ . It rigorously

shows that model complexity estimates must approach the lower bound progressively and has good
generalizability [49] because it doret assume knowledge of the true data distribution or make
specific assumptions about the observed data distribution. In section 5, wehardughly
comparethe MDL approach with other model selection criteria, including AIC, BIC, DIC, and

ICOMP.
4.0 SNS shaking table experiments

4.1 SNS shaking table experiment configuratio

To validate our proposed fsrcaamewasrhla,kiwe utaiblliez e
we conducted in [26], with a brief summary p
investigatsdi ¢ heffects of nonstructur al syst
conditions [54]. Suspended nonstructural syst
suspended cable tray system, were Itersgedt ucsfin
kind to dat e, is two stories high, measuring
wi dblhrr.i ng the test, the systdmeewdriagusies pleonde

Suspended cable tray system

Figure 4 View of steell phgtaodmcahbhtestuspgn:

4.2 Loading protocol

To accurately simulate the | ong duration and
buildings, the test specimen was | oaded with
comprehensive |ist of all the motions tested [
0.05 g was input to the specimen to evaluate
subjected to several sets ofephmptiacmce,|] eratl!l ad
obtai sedtbgsti me history analysis at differeni
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waves-LBCJ

The sweeping wave in Figure 5(b) is a sine wa
0.8 HRFATd&ate the floor | evel of the platform is
selected for analysi s, namely SHW6 (5/128), S
5(a)). These motions representdthbeatecploefyaai i
supertall Sstructure model and tBeomgcselktercat im
subjected to the ground motion SHW6 with PGA
periods of the f2&8sDryhmeedemodese 8f 94hes, 18. 93
The correspondi-faigoryesmddesl| odr ¢ hd. BDs , 1.18 s,
characteristic period of ground motion SHW6 I
t haft SHW6 (5/128). The Hstwmdymeodel pericbtdsefr t
period of the ground mesttioorny SmbWbe It;h atnh etrheafto roef,
(30/30) is | arger than that of SHW6 (128/ 128)
Table 2 Det ainlssimfpumh to speci men [ 26]
) Target acc. ~ PFA of the
Run *N Name of in - - Dur at i -
X dir Y dir X dir Y d
2 Sweep 0.05¢( 0 100 0.071 -
4 Sweep 0 0.05¢( 100 - 0.0
6 Sweep 0.05C 0.05 100 0.069 0.0
8 BCl2 0.037 0 120 0.050 -
10 BCl2 0 0.037 120 - 0.0
12 SHW6 (5/1 0.08¢ 0.07C¢C 70 0.127 0.0
12 SHW6 (128. 0.14¢ 0.13: 70 0.146 0.1
18 SHW6 ( 30/ 0.40°¢ 0.37: 150 0.571 0.5
18 Sweep 0. 15¢( 0 100 0.225 -
20 Sweep 0 0. 15« 100 - 0. 2
22 Sweep 0.15C 0.15¢ 100 0.232 0.2
24 Sweep 0.25¢( 0 100 0.393 -
26 Sweep 0 0. 25( 100 - 0.5
28 Sweep 0.35¢( 0 100 0.572 -
30 Sweep 0 0. 35(«( 100 - 1.9
32 Sweep 0.50¢( 0 100 1.319 -
Not es:
Runs of odd nmnwmhmibteer seuerdi fation with small magnitude a
2During Runs 12 and 14, theéeamldifiRt8accebéobathiebalBdspgnsaea
to the ground motion SHW6 fdroeori rmpwte,l ea rad ifduo drrregodR® utrsheel 6
story building is input.
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<
~ N

SHW6 SHW6
(128/128) (30/30)

SHW6

(5/128)

A

(a T-hay@B8Benchmdraky e(rl eSftti)c kand ixgtht ) model
80'0
E0.0
€ 000
E-0.0
<
-0.065 10 20 30 40 50 60 70 80 90 10
Time (s)
(b) Acceleration time history curve o
Figure 5 Schematic of partial motio
4. 3 Type C general i nformati on
As a case study, we selected one of the SNS e
(SCS), to test our proposed uncertasnbdbly gusann
suspended ceiling rwiet boasndampyl etoer se¢emii nt cond
6 The suspended ceidainmdg icoweairrs eanrt | ayr e eh eo fl alr g
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Figure 6 SCS type C [ 26]
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4.4 I nstrumentation

This specimen was instrumented with -A23306) ,i ndst r |
di spl acement -Dt4r0g n s dauncde r 1s6 6( Sslt6r6a)i nt og anmiegaessu r(eS 1t t
response of the ceilirmgne(ees mMegsueed)t héghab:

whereas the displacement transducer measur ed
pl atfor m.

o8 )
{ 4 |
A -;-‘ oo @
T e’ it ®
A 1&1 | ©
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D35 Y l) A 'y
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Figure 7 I nstrumentation on the cei

Not €%d:i spl acemem™adcalns@amedien ; gauge @strme nt gneagede dnr o
pan&sit:;rain gauge on thelxtrrosisn tgeau @e dors udarcryisrsg t @

4.5 Boundary conditions

The boundary conditions for the SCS affrrees howi
boundary on sides 1 -topods weebh @mhtachedstanth
and cross tees attached to thaveat heasgmesbo
conditions as sides 1 and 2.

Cross-sub cross tee connection

Hanger

= Carrying channel

Cross tee

Ceiling grid system

Figure 8 CompdayeroldCs&f [@dybIl e

Double-layer connection Main tee connection Main-cross tee connection
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