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Abstract 8 

Whether triggered by natural or human-made events, wildfires are considered one of the most 9 

traumatic events to our community and environment. Thus, properly predicting wildfires continues 10 

to be an active area of research. This work showcases a statistical overview of the problem of 11 

wildfires and then presents a dense data-driven (D3) approach that leverages a variety of machine 12 

learning (ML) techniques, namely, blackbox and eXplainable ML (i.e., deep learning (DL), 13 

decision tree (DT), Stochastic Gradient Descent (SGD), Extreme Gradient Boosted Trees 14 

(ExGBT), Logistic regression (LR)), and symbolic ML via genetic algorithms (GA) to classify and 15 

predict wildfire breakouts. This approach was developed and validated using two databases 16 

comprising more than 1.04 million geo-referenced wildfires that burned over 359,000 km2 (88.7 17 

million acres) between 1992 and 2015 in North America and Europe. Despite the complex nature 18 

of wildfire formation and the interdependency of its governing factors, the findings of this D3 19 

analysis show the feasibility of utilizing ML in preciously classifying the expected size of wildfires 20 

and predicting the possibility of the breakout of wildfires. 21 

 22 

Keywords: Wildfires; Forests; Machine learning; Big data; explainable ML, Symbolic ML. 23 

 24 

Introduction 25 

The start of the twenty-first century marks a clear transition in which the number and intensity of 26 

wildfires have exponentially risen [1]. While they can start naturally, wildfires are often caused by 27 

humans with devastating consequences. On average, wildfires burn up to 1.11 billion acres of land 28 

each year [2,3]. The united states wildfires have been significantly increasing from (140 to 250 29 

wildfires) from  (1980 to 2012)[3]. Although wildfires occur worldwide, they are most common 30 

in regions with intense droughts and frequent lightning/thunderstorms.  31 

 32 

This rise in wildfire occurrences mirrors the recent changes to our environment in which the 33 

combination of dry conditions, extended high temperatures, and trapped emissions contribute to 34 

some of these changes [4,5]. More specifically, climate change effects (and increased global 35 

warming) generate heated conditions that draw moisture from the soil and dry out plants. Global 36 

warming has not only led to the rise in wildfire occurrences, along with their intensity but has also 37 

led to an increase in human and animal casualties, property losses, and environmental damage 38 

[6,7]. This has been duly noted in the recent wildfires that broke in North America and Europe 39 

over the past few years.  40 

 41 

Wildfires require three components to breakout,  known as the fire triangle. These include; a heat 42 

source, fuel, and oxygen, heat sources, such as lightning, can supply enough heat to ignite a fire 43 

that turns into flames when fuel or any flammable material is present [8]. Such ignition is bound 44 

to spread and transport given the presence of favorable wind conditions [9,10].  45 
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 46 

Recent years have noted a surge in the amount of works that developed different approaches with 47 

the power of data analytics to forecast the breakout of wildfires. Collectively, a number of 48 

researchers [1,11–13] noted that there are three super high-tech approaches often used to predict 49 

wildfire occurrences and stop them from surging. These approaches are grouped under physics-50 

based methods, statistical methods, and machine learning methods.  51 

 52 

The first class of approaches, those lumped under physics-based methods, predicts fire breakout 53 

by using a mathematical formulation that relies on fluid and heat transfer principles [14]. As such, 54 

these approaches use novel software such as FireStation [15] and LANDIS-II [16] to model and 55 

trace wildfire through geographical space and time. Due to the extensive use of software and the 56 

need for detailed parameters on various inputs (i.e., fuel mass, characteristics of trees, air humidity, 57 

soil moisture, etc.), predictions from such approaches heavily rely on assumptions used in the 58 

analysis, are complex to set-up and computationally expensive [17]. 59 

 60 

The second approach, statistical methods, complements physics-based methods as they can also 61 

be applied to model large/spatial areas while overcoming the simulation complexity. Further, 62 

statistical methods can benefit from modern technologies (i.e., geographic information system 63 

(GIS), etc.) and can be applied at different scales and resolution/roughness [18,19]. Some of the 64 

notable statistical approaches include Poisson regression [20], Monte Carlo simulations [21], 65 

weights of evidence [22], etc. Unfortunately, statistical methods could be sensitive to the type of 66 

analyzed data and may require numerical manipulation to satisfy convergence criteria – especially 67 

for those methods associated with nonlinear nature [23].    68 

 69 

The third and most recent approach is one that leverages advancements in computer sciences. More 70 

effectively, machine learning rises as an attractive approach given its good handling of complex 71 

and high dimensional data, scalability, and affordability. Machine learning algorithms are applied, 72 

tweaked, or created to understand the complex interaction of multi-variables associated with 73 

wildfires [24–28]. While the open literature seems to favor the use of such algorithms (i.e., neural 74 

networks [29], gradient boosting [30], k-nearest neighbors [31], etc.) and despite the convenience 75 

of user-friendly and easy-to-use software that streamlines the development of machine learning by 76 

employing pre-defined algorithms and training/validation procedures [32,33], we continue to lack 77 

sufficient works on this front.  78 

 79 

A recent look into some of the works in this area clearly shows the merits of applying machine 80 

learning to enable modern and accurate prediction of wildfires [34,35]. In fact, Fig. 1 reinforces 81 

this notion by presenting the publication trend in article publications between 2000-2020 as 82 

obtained from a scientometrics analysis from the open-source scholarly database, Dimensions 83 

[36,37]. As one can see, this search returns 8,716 papers. This trend of publication is expected to 84 

continue to rise in the coming years as it capitalizes on the continued advancements in computer 85 

science.  86 
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 87 
Fig. 1 Publication trend as obtained from the Dimensions academic database [36,37] [Note: 88 

Keywords “Machine learning” AND “wildfire”] 89 

 90 

A deeper look into the majority of the noted publications displays that most works showcased the 91 

incorporation of one algorithm, often selected from researchers’ familiarity with such algorithm 92 

(in a similar manner to opting to use a particular simulation software/package). However, our 93 

perspective is that reliance on a particular model, while it may produce favorable performance, 94 

can still generate biased models that could be overturned. In contrast, we would like to explore the 95 

use of multi-algorithmic search to identify suitable machine learning model candidates that can be 96 

used in parallel, thereby expanding a researcher’s arsenal of predictive tools while adding an 97 

additional layer of redundancy.  98 

 99 

In addition, the majority of the reviewed works adopt blackbox models that require the user to 100 

program and code the machine learning model. This may lead to dependence on computing stations 101 

and, most admittedly, a heavy reliance on the user’s coding experience. To overcome these hurdles, 102 

we present the use of genetic algorithms as a means to augment the blackbox models and derive 103 

expressions that can substitute the need for algorithmic simulation. Simply put, the machine 104 

learning model will be run once to obtain the predictions, and then these predictions are fitted into 105 

an expression (or a form of a mapping function [38]) that can be substituted by hand or via a simple 106 

spreadsheet. The user would not need to code a new machine learning model to predict wildfire 107 

occurrence since the user can now use the derived expression directly. 108 

 109 

In hopes of narrowing this knowledge gap and in pursuit of accelerating research efforts in this 110 

area, this work presents a statistical overview of the problem of wildfires and then deep dives to 111 

present a dense data-driven (D3) approach that integrates different machine learning algorithms to 112 

realize modern wildfire assessment tools that have the capability to predict occurrence and size of 113 

wildfires. This approach was developed and validated using measured data points obtained from 114 

1.04 million geo-referenced wildfires between 1992 and 2015 in North America and Europe. The 115 
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consequence of this D3 analysis demonstrates the suitability and feasibility of exploiting intelligent 116 

analysis tools to modernize wildfire disaster planning and optimal resource allocation. 117 

Statistical Overview 118 

Recent statistics have shown that the annual count of worldwide wildfires reaches 200,000 and 119 

that these fires burn 3.5–4.5 million km2 (equivalent to 0.86–1.11 billion acres) [2,3]. It is also 120 

interesting to note that the average number of large wildfires occurring in the United States 121 

increased from 140 to 160 to 250 in the periods of 1980-1989, 1990-1990, and 2000-2012, 122 

respectively [3]. The United Nations Office for Disaster Risk Reduction (UNODRR) also supports 123 

these statistics and reports that insured losses arising from wildfires around the world in 2017 124 

totaled $14 billion, the highest ever in a single year [4]. Trends were most substantial for southern 125 

and elevated regions, overlapping with tendencies toward amplified drought severity. The number 126 

of large fires increased as well as the total fire area increased per year [80]. 127 

 128 

In the United States, wildfires in the Western region are greater and burn more land than their 129 

counterparts in other regions. For example, nearly 26,000 wildfires burned approximately 9.5 130 

million acres in the Western US, as compared with the over 33,000 fires that burned about 0.7 131 

million acres in Eastern regions in 2020 [81]. This horrifying statistical information led to 132 

extending the average length of fire season from 5 months in the early 1970s to slightly over seven 133 

months nowadays (in the US) [3]. These prime conditions in forests for frequent and intense 134 

wildfires as opposed to those experienced in the past decades [7,8]. On the European front, the 135 

UNODRR also noted a similar observation and reported how the most damaging fires that occurred 136 

in June and October of 2017 fell outside of the traditional fire season (July to September), thus, 137 

indicating a shift towards a longer wildfire season [4].  138 

 139 

The surge in the number of wildfires, along with their intensity, is expected to increase associated 140 

casualties, property losses, and environmental damage [9,10]. This has been noted in the recent 141 

wildfires that broke in North America and Europe over the past few years. For example, the last 142 

year was one of the most destructive fire season in California, in which over 7,600 km2 burned, 143 

causing over $3.5 billion in damages. It was also in the same season that Mendocino Complex Fire 144 

(which burned over 1,860 km2) became the largest single fire in California’s history [11]. Within 145 

the same timeframe, the Canadian province of British Columbia underwent its largest wildfire, 146 

which caused the burning of an area equivalent to 1.3% of the total territory. This fire also led to 147 

evacuating 40,000 people [11]. The past few years have also witnessed similar occurrences most 148 

notably in Greece [12], Portugal [13], and most recently in Australia. In a nutshell, forest wildfires 149 

pose a serious threat to our communities and need to be properly understood, predicted, and 150 

mitigated [14]. 151 

 152 

To date, over 46 million homes in 70,000 urban, suburban and native communities are at risk of 153 

wildfires in the US alone [39]. One should also be cognizant that in a severe fire season, wildfires 154 

can burn thousands of structures (e.g., 10,488 buildings in the 2020 California wildfires [40] and 155 

5,900 buildings in the 2020 Australian bushfires [41]), and such numbers are expected to rise given 156 

the recent inertia for urban development and construction. While statistics on human losses are 157 

often accessible [42,43], statistics on animal losses may not be as easily obtained. According to 158 

the World Wide Fund for Nature [44] at least 1.25 billion animals were killed (and about 2.75 159 

https://doi.org/10.1016/j.nhres.2022.08.001
https://doi.org/10.1016/j.nhres.2022.08.001


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.nhres.2022.08.001.  

Please cite this paper as:   

Al-Bashiti, M., Naser, M.Z. (2022). Machine Learning for Wildfire Classification: Exploring Blackbox, eXplainable, 

Symbolic, and SMOTE Methods. Natural Hazards Research. https://doi.org/10.1016/j.nhres.2022.08.001.      

 

5 

 

billion were harmed) during the 2020 Australian bushfires alone. At the time of this proposal, we 160 

were not able to find a reliable source to report the number of animal losses to US wildfires.  161 

 162 

Methods  163 

Development of Databases 164 

In order to effectively apply the D3 approach, there is a need to compile observations on wildfires 165 

in order to develop a proper wildfire database. As such, a literature survey was carried out and 166 

resulted in identifying two publicly available databases comprising more than 1.04 million geo-167 

referenced wildfires that burned over 359,000 km2 (88.7 million acres) between 1992-2015 in the 168 

United States [45] and Portugal [46]. These databases cover well documented wildfires with 169 

varying aspects and characteristics. These databases will be used for separate machine learning 170 

analyses.  171 

 172 

The first analysis aims to use the first database (to be referred to as the US database here) to create 173 

machine learning classifiers that can predict the occurrence and expected size of a given wildfire 174 

as a function of a set of variables (outlined below). In the second analysis, the second database 175 

(aka. Portugal database) is used to create mathematical expressions that can identify the expected 176 

size of a wildfire pending environmental features. Both databases, along with their variables, are 177 

described below.  178 

 179 

Database on wildfires occurring in the US  180 

The first database covers a spatial description of major wildfires that broke out within the United 181 

States (US) from 1992 to 2015. The US area covers approximately 9,830,000 km2. These fires 182 

were obtained from the reports published by federal, state, and local fire organizations. The 183 

observations were transformed to comply with the standards of the National Wildfire Coordinating 184 

Group (NWCG) [47]. It is worth noting that this database was initially pre-processed to remove 185 

redundant and incomplete observations. After this cleansing procedure, a total of 1.04 million (out 186 

of 1.88 million) geo-referenced wildfire records that burned through 88.7 million acres during the 187 

aforementioned 24-year period were arrived at.  188 

 189 

The same database contains 50 parameters (ranging from geographical location to fire breakout 190 

cause and size etc.) and can be freely accessed at [45] or [48]. The database also contains six 191 

variables: discovery day of wildfire (a numerical value ranging between 1-365), year of wildfire 192 

(a numerical value ranging between 1992-2015), latitude and longitude of wildfire occurrence, 193 

wildfire cause (in thirteen categories*), and state at which wildfire took place. Further, this database 194 

has one predictor as “wildfire size,” and this was divided into seven classes that are arranged 195 

alphabetically; (A†=greater than 0 but less than or equal to 0.25 acres, B=0.26-9.9 acres, C=10.0-196 

99.9 acres, D=100-299 acres, E=300 to 999 acres, F=1,000 to 4,999 acres, and G=5,000+ acres). 197 

Figure 2 shows further statistics and the geographic location of wildfires from this database.  198 

 199 

 
* Categories include: arson, camp fire, debris burning, equipment use, fireworks, lightning, miscellaneous, powerline, 

railroad, smoking, structures, caused by children, and undefined.  
† Due to its small area, this class was not examined further herein. 
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(a) No. of wildfires in top 25 states in the US 

 
(b) Cause of wildfires 

 

(c) No. of wildfires per year 
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(d) Size of wildfires 

 
(e) Spatial distribution of wildfires 

Fig. 2 Statistics obtained from the first database (US)  200 

 201 

Database on wildfires occurring in Portugal  202 

The second database was prepared by Cortez and Morais [49,50], and this database was collected 203 

from the burned areas of Montesinho natural park, located in the northeast region of Portugal. The 204 

database contains 517 wildfires that occurred between January 2000 to December 2003.  205 

 206 

The database comprises the following attributes: geographic features, temporal variables, average 207 

monthly weather settings (e.g., temperature, relative humidity, wind speed, rain), as well as distinct 208 

weather-based indices. These indices include Fine Fuel Moisture Code (FFMC) which influences 209 

ignition and fire spread, Duff Moisture Code (DMC), Drought Code (DC), Initial Spread Index 210 

(ISI), which correlates with fire velocity spread, Buildup Index (BUI), and Fire Weather Index 211 

(FWI) following the Canadian system for rating fire danger‡ [51]. As per suggestions laid out by 212 

Cortez and Morais (2008, 2007), the following four weather index were used as attributes from 213 

this database: FFMC, DMC, DC, and ISI (as the rest of the attributes make up these indices). The 214 

 
‡ FFMC: moisture content surface litter. DMC and DC represent the moisture content of shallow and deep organic 

layers (and hence affect fire intensity). BUI reflects upon the availability of fuel. FWI combines ISI with BUI and 

indicates the magnitude of fire intensity. 
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predictor in this database was the size of burned areas and ranged from 0-11 km2 (0-2695.5 acres) 215 

in a similar breakdown to classes that used in the first database is also followed herein. Figure 3 216 

shows further statistics on this database.  217 

 
(a) Weather conditions 

 
(b) Weather indices  
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(c) Size of burned areas 

Fig. 3 Statistics obtained from the second database (Montesinho natural park, Portugal) [Note: 218 

The horizontal represents each individual wildfire] 219 

Description of Machine Learning Algorithms  220 

A dense data-driven (D3) approach that leverages machine learning to uncover hidden patterns 221 

within the two datasets described above is presented herein. 222 

 223 

The overarching goal of the D3 approach is to draw conclusions that could be mapped into a 224 

solution (or set of solutions) to the wildfire occurrence phenomenon being investigated as part of 225 

this study. To attain at such a solution, key features governing a wildfire breakout and spread in 226 

addition to the governing relation that connects these features, are to be identified first. As 227 

researchers, our domain knowledge alludes to the fact that a wildfire can breakout once/if several 228 

conditions converge. Such conditions may include weather and climate factors (i.e., temperature, 229 

humidity, etc.), spatial factors (topology, ignition agents, etc.), and fuel conditions (i.e., vegetation 230 

type, heterogeneity of landscape, etc.), among others. The interaction of these features determines 231 

how a wildfire can break out and how it will spread, intensify, and potentially be controlled.  232 

 233 

Hence, the rationale behind adopting D3 is that since wildfires behavior can be observed (say in 234 

the databases from actual fires as collected in Sec. 3.0), then a governing relation connecting the 235 

cycle of a wildfire to its key features can be obtained through D3. Such a relation can be arrived at 236 

via machine learning models, as well as could be converted into a mathematical expression via 237 

symbolic ML. A systematic analysis of such a magnitude will require special computational 238 

treatment, and this is where D3 shines. The following algorithms are used herein; deep learning 239 

(DL), decision tree (DT), Stochastic Gradient Descent (SGD), Extreme Gradient Boosted Trees 240 

(ExGBT), Logistic regression (LR), and genetic algorithms (GA), and these are further described 241 

below.  242 

 243 

Deep learning (DL) 244 

The architecture of a DL algorithm follows that of the brain and consists of a similar topology or 245 

layout (see Fig. 4). Such topology is characterized by layers. The outermost layer receives the data 246 

(representing attributes, say wildfire cause, metrological conditions, etc.) to be analyzed. For this 247 

reason, this layer is denoted as the input layer. The inputs are then fed into the next set of layers, 248 

the hidden layers. These layers, or in some cases one layer, house processing units called neurons. 249 

The neurons analyze input data via a series of generated weightages (connections). It is through 250 

this analysis that the algorithm learns and recognizes any relevant patterns impeded by input data 251 

points. This recognition is then mapped into patterns using transformative operations and 252 

functions. This aforenoted process sums up the training process of a typical DL algorithm. Once 253 

this process passes fitness requirements (whether a pre-defined number of iterations and/or until 254 

satisfying a set of fitness metrics), the training is completed, and the algorithm is set into the testing 255 

stage.  256 

 257 

The most frequently adopted optimization technique in DL is called Leveberg-Marquard. This 258 

technique assesses the error by evaluating the mean squared error (MSE) [52]. In this optimization 259 

method, if z is the experimental dataset, then MSE is evaluated using Eq. 1:  260 
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where, z = the total number of datasets, 𝑒𝑖 = the error for each input set, 𝑚𝑖 = the measured output, 261 

and 𝑝𝑖 = the estimated output.  262 

 263 

In this development, a pre-sensitivity analysis inferred that adopting a ReLu activation function for 264 

DL with an initial learning rate of 0.001, 3 hidden layers (with 256, 128, and 64 units) led to 265 

achieving an optimal DL architecture. The final outcome within the hidden layers is then 266 

forwarded to the output layer for visualization. 267 

 268 

 269 
Fig. 4 A typical DL topology  270 

 271 

Decision tree (DT) 272 

A DT algorithm is attractive in a classification-like problem similar to that tackled herein to 273 

classify the expected size of a wildfire. A key advantage to DT is its ability to create a diagram-274 

like depiction of all likely decisions [53]. The DT analysis starts by separating the database into 275 

branch-like shapes. Then, a random decision tree is created at a root node and then grows into 276 

other tree-like components (i.e., leaves, etc.). The created DT was optimally designed to have a 277 

maximum depth of 45, with a confidence level = 0.1, minimum leaf size, and maximum size for 278 

split equals 2 and 4, respectively [54,55]. A DT analysis may utilize additional measures such as 279 

Gini impurity to facilitate the analysis and processing of data points. For example, for a node t, 280 

Gini index g(t) is defined as [56]: 281 

 282 

𝑔(𝑡) = ∑ 𝑝(𝑗|𝑡)𝑝(𝑖|𝑡)𝑗≠𝑖          (2) 283 

  284 

where i and j are target field categories. 285 

 286 

𝑝(𝑗, 𝑡) =
𝑝(𝑗,𝑡)

𝑝(𝑡)
;𝑝(𝑗, 𝑡) =

𝜋(𝑗)𝑁𝑗(𝑡)

𝑁𝑗
; and 𝑝(𝑡) = ∑ 𝑝(𝑗,𝑡)𝑗       (3) 287 

  288 

Output layer Hidden layers Input layer 
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Stochastic Gradient Descent (SGD)  289 

SGD regularizes linear models such as support vector machines and logistic regression with 290 

stochastic gradient descent (SGD) learning in classification problems [57]. SGD adopts a plain 291 

stochastic gradient descent learning process with a loss penalty function as shown in Eq (4).  292 

 293 

𝐸(𝑤, 𝑏) =
1

𝑛
∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) + 𝛼𝑅(𝑤)

𝑛

𝑖=1
      (4) 294 

 295 

Where, L is a loss function that measures model, R is a regularization term; α>0 is a non-296 

negative hyperparameter that controls the regularization strength. The developed algorithm 297 

was incorporated with LogLoss as a loss function, ElasticNet as a regularization function, 298 

and α = 2.2×10-5. 299 

 300 

Extreme Gradient Boosted Trees (ExGBT) 301 

This algorithm [58] re-samples data points into a series of tree, where each tree boostraps a sample 302 

some data points in each iteration. ExGBT fits each successive tree to the residual errors from all 303 

the previous trees and focuses on the most difficult cases to predict to increase its prediction 304 

accuracy (see Eq. 5). The developed algorithm incorporated a learning rate of 0.05, a maximum 305 

tree depth of 5, a subsample feature of 0.8, and a minimum interval for early stopping of 200. 306 

 307 

𝑌 = ∑ 𝑓𝑘(𝑥𝑖)𝑀
𝑘=1 , 𝑓𝑘 ∈ 𝐹 = {𝑓𝑥 = 𝑤𝑞(𝑥), 𝑞: 𝑅𝑝 → 𝑇, 𝑤 ∈ 𝑅𝑇}   (5) 308 

 309 

where, M is additive functions, T is the number of leaves in the tree, w is a leaf weights 310 

vector, wi is a score on i-th leaf, and q(x) represents the structure of each tree that maps an 311 

observation to the corresponding leaf index [59].  312 

 313 

Logistic regression (LR) 314 

The regularized LR algorithm aims to maximize the likelihood of observing a phenomenon 315 

through its capability to estimate coefficients for identified features to measure the comparative 316 

influence of each feature on the phenomenon [60]. Therefore, LR is noted to be a successful 317 

algorithm for classification problems [61]. LR, and just like other algorithms, can suffer from 318 

overfitting. To avoid this, LR’s loss function can be modified with a penalty term to 319 

shrink/penalize the estimates of the coefficients. L2 penalty is used herein as it is proven effective 320 

during a pre-sensitivity study [62]. The used algorithm has a true fit intercept and approximates 321 

the multi-linear regression function: 322 

 323 

 𝑙𝑜𝑔𝑖𝑡(𝑝) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛        (6) 324 

 325 

where, p is the probability of the presence of a phenomenon. The logit transformation is 326 

defined as the logged odds: 327 

 328 

𝑜𝑑𝑑𝑠 =
𝑝

1−𝑝
          (7) 329 

 330 

and, 331 
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 332 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1−𝑝
) + L2(penalty)        (8) 333 

The developed algorithm incorporated a learning rate of 0.05, a maximum tree depth of 5, 334 

subsample feature of 0.8, and a minimum interval for early stopping of 200. 335 

 336 

Genetic Algorithms (GA) 337 

This algorithm is an evolutionary method that was initially presented by Holland [63] and Koza 338 

[64]. GA leverages the concept of the natural selection process to arrive at hidden relations between 339 

attributes and expected outcomes in a symbolic format. In GA, a set of expressions are numerically 340 

derived from mapping to mathematical expressions that can be used to represent the size of 341 

wildfires [65,66].  342 

 343 

The GA analysis starts by creating a populace of arbitrary expressions. These expressions consist 344 

of a tree-like formation that houses mathematical operations (addition, multiplication, etc.) and/or 345 

mathematical functions (power, log, etc.). In some scenarios, a GA-based expression may also 346 

contain conditional and logic functions. The GA-based expression is configured into a tree with 347 

hierarchical form, which can then be transformed into a Karva-expression as shown in Fig. 5. Once 348 

a set of the suitable formula is generated, the algorithm then assesses the fitness (i.e., accuracy) of 349 

each expression. Only the fittest expression is then selected for the next stage of analysis. In this 350 

stage, the expression is then manipulated by bio-inspired transformative operations, i.e., 351 

reproduction, crossover, and mutation [64,67].  352 

 353 
Fig. 5 Representation of a typical GA 354 

 355 

The first, reproduction, the operation ensures that fittest expressions have higher primality of 356 

selection to the following stages of analysis. The second, crossover, operation allows the exchange 357 

of genetic code (i.e., mathematical functions) between evolved expressions. The third mutation, 358 

an operation, can randomly select a function from an expression to mutate into another function 359 

[68]. Similar to other algorithms, the GA analysis also terminates once the fitness of a fit 360 

expression is achieved or by satisfying a convergence condition. Figure 6 demonstrates a typical 361 

flow of GA analysis. 362 

 363 
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 364 

Fig. 6 A flowchart of GA analysis  365 

 366 

Results and Discussion  367 

Now that the databases are compiled, these databases can be analyzed using the selected 368 

algorithms. This analysis resembles a classification problem where each machine learning model 369 

is expected to correctly label the examined fires (given each fire’s set of variables). To start this 370 

analysis, first, each dataset was first randomly shuffled to minimize biases arising from a specific 371 

wildfire attribute. Then, the ML algorithms are trained using 10 k-fold cross validation [69,70]. 372 

The analysis was conducted by using the aforenoted algorithms in Matlab [71], Python [72], and 373 

GMDH environments [73,74]§.  374 

 375 

The outcome of each machine learning model is then cross checked against that of the ground 376 

truth. In this pursuit, specific classification metrics are used. The first is a composite metric known 377 

as the confusion matrix, and the second is the LogLoss error [75]. 378 

 379 

The outcome of the D3 analysis is listed in Table 1 by means of the confusion matrix. This matrix 380 

lists the fitness of the applied algorithms in classifying the wildfires as well as two fitness metrics 381 

(Accuracy and LogLoss error). The Accuracy (ACC) metric evaluates the ratio of a number of 382 

correct predictions to the total number of samples. 383 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (9)  384 

 385 

where, P (denotes the number of real positives), N (denotes the number of real negatives), TP 386 

(denotes the true positives), TN (denotes t the rue negatives), FP (denotes the false positives), and 387 

 
§ In this study, the databases were kept in their original datapoints without any preprocessing to minimize their 

imbalanced-nature to examine the raw  effectiveness of the selected algorithms when applied “as is”. A future study 

will explore different treatment techniques for imbalanced data for the same algorithms. Incorporating such techniques 

and results can significantly push the size of this paper beyond the limitation of a standard article.  

StartStart

Generate random expressionsGenerate random expressions

Idenitfy possible/fit expressrionIdenitfy possible/fit expressrion

Assess fitness of selected 
expression

Assess fitness of selected 
expression

Terminate analysis once fitness 
criteria is met

Terminate analysis once fitness 
criteria is met

If not, apply genetic 

operation (mutation, 

crossover, etc.) and/or re-

iterate.  
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FN (denotes false negatives) – and hence the composite nature of the matrix. And, LogLoss error 388 

metric measures where the prediction input is a probability value. 389 

𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃𝑀
𝑐=1           (10) 390 

 391 

where, M:  number of classes, c: class label, y: binary indicator (0 or 1) if c is the correct 392 

classification for a given observation. It is worth noting that an accuracy closer to unity and a 393 

LogLoss error close to zero imply favorable predictive performance.  394 

 395 

Blackbox ML 396 

The first analysis adopts six blackbox machine learning algorithms and six variables: discovery 397 

day of wildfire, year of wildfire, latitude, and longitude of wildfire occurrence, wildfire cause, and 398 

state at which wildfire took place to predict the expected size of the wildfire. A closer look at Table 399 

1 shows that all models achieved a comparable accuracy that centers around 80% and LogLoss 400 

error ranging between (0.42-0.61).  401 

 402 

These results show a couple of interesting observations. For a start, regardless of the machine 403 

learning model type, or search mechanism, it is clear that the adopted models have a good grasp 404 

on predicting wildfire occurrences (with minimal tuning, as noted in Sec. 4.). Secondly, the DL, 405 

DT, SGD, ExGBT, and LR algorithms achieved comparable performance in accuracy, with DL, 406 

DT, and ExGBT ranking top three. Recent works on the front of wildfires have also noted the 407 

predictive capacity of such algorithms [76–78]. Thus, we can comfortably say that adopting these 408 

three models as independent and redundant models to identify wildfire breakouts can be of merit. 409 

 410 

In all cases, whenever a wildfire class is mistakenly classified with an error larger than 20%, this 411 

error is highlighted in red. In addition, it is clear that SGD and LR suffered in predicting individual 412 

wildfire sizes. It is clear that the imbalanced nature of the used database on US wildfires adversely 413 

affected these algorithms.  414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 
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Table 1 Performance of ML algorithms  433 

DL True C True D True E True F True G Accuracy LogLoss 

Pred. C 84.3 23.8 51.7 30 54.3 

0.825 0.418 

Pred. D 7.5 76.0 0.0 0.0 0.0 

Pred. E 5.4 0.0 47.8 3.9 0.0 

Pred. F 1.7 0.0 0.4 49.4 0.2 

Pred. G 0 0.0 0.0 16.5 45.4 

        

DT True C True D True E True F True G 

0.822 0.433 

Pred. C 84.4 23.6 52.6 28.7 31.8 

Pred. D 8 76.3 0.0 0.0 0.0 

Pred. E 5.4 0.0 47.3 3.8 4.5 

Pred. F 1.9 0.0 0.0 50.6 40.9 

Pred. G 1.1 0.0 0.0 16.7 22.7 

        

SGD True C True D True E True F True G 

0.794 0.544 

Pred. C 79.5 99.4 100 44.4 0.0 

Pred. D 10.5 0.5 0.0 0.0 0.0 

Pred. E 5.4 0.0 0.0 0.0 0.0 

Pred. F 3 0.0 0.0 44.4 0.0 

Pred. G 1.4 0.0 0.0 11.1 0.0 

        

ExGBT True C True D True E True F True G 

0.818 0.451 

Pred. C 82.8 25 37.9 29.8 54.5 

Pred. D 8.7 74.9 0.0 0.0 0.0 

Pred. E 5.6 0.0 62.1 0.0 0.0 

Pred. F 1.7 0.0 0.0 49.7 1.8 

Pred. G 1 0.0 0.0 16.3 43.6 

        

LR True C True D True E True F True G 

0.797 0.611 

Pred. C 79.5 0.0 0.0 83.3 0.0 

Pred. D 10.5 0.0 0.0 0.0 0.0 

Pred. E 5.4 0.0 0.0 0.0 0.0 

Pred. F 3 0.0 0.0 0.0 0.0 

Pred. G 1.4 0.0 0.0 16.6 0.0 

 434 

Symbolic ML 435 

While the above algorithms are used as more of a standard assessment “tool” for the first database, 436 

the second analysis uses GA to arrive at symbolic expressions that can be substituted into to 437 

estimate wildfire class in the second database, given the availability of information regarding four 438 

weather-based indices (FFMC, DMC, DC, and ISI). This decision can be rationalized by the notion 439 

that GA, unlike the other blackbox models, can output an expression that a user can 440 

apply/substitute directly instead of running a coded model. 441 
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For practicality, and since the second database included a number of wildfires that were of low 442 

size and intensity, GA-expressions were derived for wildfire classes C, D and E (and greater). 443 

Table 2 lists these expressions along with their performance. Table 2 shows that GA managed to 444 

properly derive simple expressions that can be used to predict the size of a given wildfire. The 445 

predictivity of these expressions was established through the correlation coefficient**, R – see Eq. 446 

11. As one can see, these equations are highly nonlinear and represent the complex nature of the 447 

phenomenon on hand. 448 

 449 

𝑅 =
∑ (𝐴𝑖−𝐴𝑖)(𝑃𝑖−𝑃𝑖)

𝑛

𝑖=1

√∑ (𝐴𝑖−𝐴𝑖)2
𝑛

𝑖=1
∑ (𝑃𝑖−𝑃𝑖)2

𝑛

𝑖=1

           (11) 450 

where, A is actual data points, and P is for predicted data points.  451 

 452 

The derived expressions can come in handy in assessing the projected size of a wildfire knowing 453 

the magnitude of the previously identified weather indices. Having such tools can come in handy 454 

in a variety of scenarios, especially those associated with abrupt wildfire breakout and those that 455 

may require a quick judgment call to allocate proper resources to fight the wildfire. For 456 

transparency and completion, we expect future works to be able to devise improved expressions 457 

with higher accuracy – especially once the dataset is massaged for imbalanced data. 458 

 459 

Table 2 GA-derived expressions to predict wildfire class via weather indices. 460 

Class Expression R 

C 

𝐶𝑙𝑎𝑠𝑠 𝐶 = 𝑆𝑡𝑒𝑝 (0.0815𝐹𝐹𝑀𝐶 + 0.0208𝐷𝐶 + 7.047 tan(1.522𝐷𝑀𝐶) +
3.852 tan(193.6𝐷𝑀𝐶) + tan(136.5𝐷𝑀𝐶) + tan(tan(0.2517𝐷𝑀𝐶)) −
tan(5.203𝐹𝐹𝑀𝐶 × 𝐷𝑀𝐶) − 0.02121𝐼𝑆𝐼 − 0.0647𝐷𝑀𝐶)  

0.82 

D 

𝐶𝑙𝑎𝑠𝑠 𝐷 = 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (0.0326𝐷𝑀𝐶 + 0.00656𝐹𝐹𝑀𝐶) + (−1.352 −
tan(8.933𝐷𝑀𝐶)

0.02𝐼𝑆𝐼+3.96×10−10𝐷𝐶×𝐷𝑀𝐶3 − tan(1.524𝐷𝑀𝐶) − tan(1.522𝐷𝑀𝐶) −

tan(5.446 × 10−5  × 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0.005𝐷𝑀𝐶, −0.7548 tan(1.522𝐷𝑀𝐶))) −

0.01207𝐷𝐶 − 0.04806𝐼𝑆𝐼)  

0.86 

E 

𝐶𝑙𝑎𝑠𝑠 𝐸 = 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (0.04039𝐷𝑀𝐶 + tan(tan(3.442𝐷𝐶)) −

cosh(𝑠𝑖𝑛(𝑡𝑎𝑛(0.005𝐷𝑀𝐶)) × cos(0.161𝐷𝐶2))) − 0.00117𝐷𝐶 −

0.1261𝐼𝑆𝐼 − 0.1525𝐹𝐹𝑀𝐶)  

0.87 

In each case, a value of 1.0 indicates that the outcome of a given expression agrees with the 

identified class. 

 461 

Explainable ML 462 

To supplement the GA analysis and to combat the blackbox nature of the traditional algorithm 463 

wherein, for example, the models listed in Table 1 do not articulate how the correct or poor 464 

predictions were arrived at, we apply the explainability method SHapley Additive exPlanations 465 

(SHAP) [79] to the ExGBT to better analyze its performance when applied to the second database. 466 

In parallel, the initial phase of analysis noted a need to improve the model given the imbalances 467 

 
** We also recommend the adoption of other companion metrics.  
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of the data in the categories (E, F). Thus, the Synthetic Minority Oversampling TEchnique 468 

(SMOTE) was applied [80]. SMOTE copies data from the small classes with the lower data point 469 

and adds it to the dataset to create a balanced dataset and better resemble or match the number of 470 

examples in most classes. Note that such a technique does not affect the model accuracy and only 471 

provides the model with different copies of the samples from the same category. 472 

 473 

We start by re-validating this model against the second database. The confusion matrix (see Fig. 474 

7) is also used to validate the model. This matrix shows exactly how many errors have been made 475 

by the model by comparing the testing set class with the predicted results and the training set class 476 

with the predicted results. It is clear that the model was able to classify over 90% of the samples 477 

correctly on the training set only; however, for the testing set, the model achieved 84%. Please 478 

note that our Python code is provided in the Appendix.  479 

  

Fig. 7 Confusion matrix on the second database 480 

 481 

Now that the model is validated, let us examine the results of our analysis use SHAP feature 482 

importance plot, which shows all the features stacked in horizontal lines representing the effect of 483 

each feature on the predicted class of the occurred wildfire (see Fig. 8). For instance, the 484 

temperature was found to be the most influential overall. However, for a specific class, that is not 485 

true. Taking class E as an example, the most important factor that affects class E wildfire is ISI. 486 

Similarly, the temperature was not seen to be o high importance for classes E and B. Also, 487 

temperature and wind is the most important factor in predicting the occurrence of class A wildfires 488 

but not for class C. Another example is that by looking at the DMC, we can conclude that it highly 489 

influences classes E and D. An inherent issue with such a plot is that it does not explain how each 490 

feature affects the model, positively or negatively.  491 
 492 
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 493 

Fig. 8 Feature importance plot for all the classes (A-F). 494 

To explain multi-class models with two or more classes, one needs to generate new features that 495 

are uniquely dedicated to these classes. This can be seen in terms of the SHAP Summary Plot, 496 

which represents both the feature importance and the direction each feature affects the model's 497 

class of wildfire. For instance, Fig. 9a represents class A’s feature importance and the direction of 498 

each feature's effect in a specific class. One can see those high values of wind temperature and 499 

DMC negatively affects the occurrence of a wildfire in class A. the sub-figures shown in Fig. 9 500 

represent the other classes B, C, D, E, and F, respectively.  501 

 502 

 503 
(a) Class A 504 
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 505 
(b) Class B 506 

 507 
(c) Class C 508 

 509 
(d) Class D 510 
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 511 
(e) Class E 512 

 513 
(f) Class F 514 

Fig. 9 SHAP summary plot for all the classes (A-F). 515 

 516 

Closing Remarks on Wildfires Predictive and Classification Tools 517 

It goes without saying that the accuracy in predictions obtained applying the dense data-driven 518 

(D3) approach relies on the presence of information on correctly identified wildfires as well as 519 

properly documented parameters such as weather indices. While this study presents results 520 

obtained on two databases, one in the US and another one from Portugal, the reader should keep 521 

in mind that the presented approach can also be extended to other parts of the world as well as to 522 

encompasses a variety of input parameters [81]. This work infers that D3 approach can lead to 523 

developing support tools that can aid the human-heavy decision making process, and we hope to 524 

explore such aspects in future work.  525 

 526 

For example, if authorities are preparing for a wildfire season in the state of California, then they 527 

could possibly use the DL or DT tool to gauge the expected size of a wildfire, given that they input 528 

attributes comprising of: the discovery day of wildfire, latitude, and longitude of expected incident 529 

occurrence, and wildfire causes. Based on the outcome of the developed tools, the authorities will 530 

be able to estimate how many resources are expected to be allocated and deployed for such 531 

wildfires. One instance is given here as an illustration. In this scenario, a wildfire is expected to 532 

breakout on the 201st day of a given year in California in a location with longitude and latitude of 533 

-123.0 and 40.0, respectively. Based on the analysis from DL and DT tools, these tools show how 534 
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that such wildfire is expected to be primarily of “B” size fire (based on observations from 1992-535 

1994 and 2001-2009) with the potential to grow into a size “C” and beyond (based on observations 536 

collected between 1994-2001). While this estimation heavily relies on previous wildfire incidents 537 

still, it can be helpful to gauge the size and intensity of future wildfires with ease and in 538 

combination with currently used methods that utilize qualitative metrics and methods such as that 539 

shown in Fig. 10 [82,83].  540 

 541 
Fig. 10 Predictions for wildland fire potential as obtained by the National Interagency Fire 542 

Center for the Month of August 2019 543 

 544 

Similarly, the GA-derived expressions and explainable model for the case of wildfires occurring 545 

in Portugal can also be used to estimate the size of wildfires, given insights into weather indices. 546 

In this scenario, these expressions can be used to alarm authorities, occupants, and commuters in 547 

areas with high vulnerability to wildfire breakouts. This can also turn handy for preparedness and 548 

ensuing awareness in particular regions prone to wildfires. In all cases, the developed tools can be 549 

used as either predictive methods (i.e., to evaluate if a wildfire is expected to break out) or as 550 

classification methods (i.e., to estimate the size of an ongoing wildfire).   551 

 552 

Finally, one should note that machine learning algorithms are adaptable and can improve by 553 

collecting new observations for analysis [84–86]. The proposed expressions/tools can also be 554 

designed to account for other attributes than those applied here. For example, future works are 555 

invited to explore adding attributes covering weather conditions, the magnitude of resource 556 

allocations (i.e., number of first responders, evacuation crews, etc.), expected damage to the 557 

environment (i.e., air quality, smoke/toxicity levels, fire spread, etc.) as well as to infrastructure 558 

(number of collapsed structures or bridges, etc.).  559 

 560 
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Conclusions  561 

This work shows the merit of leveraging computational intelligence in order to develop predictive 562 

tools that are able to accurately predict the breakout and size of wildfires. More specifically, this 563 

paper explores the integration of deep learning (DL), decision tree (DT), Stochastic Gradient 564 

Descent (SGD), Extreme Gradient Boosted Trees (ExGBT), Logistic regression (LR), and genetic 565 

algorithms (GA) to gauge expected size of a wildfire given knowledge on existing geographical 566 

and environmental condition as well as human-based factors. In lieu of the above, the following 567 

conclusions can also be drawn from the findings of this study: 568 

• Recent incidents have noted the increasing frequency and intensity of modern wildfires. 569 

As such, there is a need to properly predict the occurrence and size of such wildfires.  570 

• Deep learning and decision tree algorithms seem to properly capture the wildfire 571 

phenomenon with accuracy exceeding 80%. On the other hand, genetic algorithms can 572 

also derive appropriate expressions that can be easily implemented into spreadsheets to 573 

predict the expected size of wildfires with good accuracy (R exceeding 80%). All these 574 

tools can potentially be implemented in practice to predict and classify wildfire sizes 575 

• The use of explainable and symbolic ML can lead to realizing different types of 576 

transparent and equation-like tools to predict wildfires. 577 

• The performance of the utilized algorithms herein (together with those to be developed 578 

in the near future) can be further enhanced with further training against properly 579 

documented wildfire observations, as well as historical information, etc. 580 
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Appendix 830 

Here is our code. The database can be found at [46] and [50]. 831 

 832 
import sklearn 833 
from sklearn.model_selection import train_test_split 834 
import pandas as pd 835 
import numpy as np 836 
import shap 837 
import xgboost as xgb 838 
from matplotlib import pyplot 839 
from sklearn.metrics import accuracy_score 840 
from sklearn.metrics import plot_confusion_matrix 841 
from sklearn.metrics import accuracy_score 842 
from imblearn.over_sampling import SMOTE 843 
from imblearn.over_sampling import BorderlineSMOTEIn                                                                        844 
wildfire=pd.read_excel('Portugal ABCDEF.xlsx')  845 
wildfire 846 

 847 
 FFMC DMC DC ISI Temperature Relative humidity Wind Class 

0 83.0 23.3 85.3 2.3 16.7 20 3.1 A 

1 63.5 70.8 665.3 0.8 17.0 72 6.7 A 

2 90.1 108.0 529.8 12.5 14.7 66 2.7 A 

3 94.8 227.0 706.7 12.0 23.3 34 3.1 A 

4 94.8 227.0 706.7 12.0 25.0 36 4.0 A 

... ... ... ... ... ... ... ... ... 

512 92.5 121.1 674.4 8.6 18.2 46 1.8 E 

513 91.0 129.5 692.6 7.0 18.8 40 2.2 E 

514 89.2 103.9 431.6 6.4 22.6 57 4.9 E 

515 94.8 222.4 698.6 13.9 27.5 27 4.9 F 

516 92.5 121.1 674.4 8.6 25.1 27 4.0 F 

517 rows × 8 columns 848 

x=wildfire.drop(['Class'],axis=1) 849 
y=wildfire['Class'] 850 
oversampled = SMOTE(sampling_strategy='auto',  851 
                    random_state=5,k_neighbors = 1 852 
                    ) 853 
x, y = oversampled.fit_resample(x, y) 854 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.250,random_state=10) 855 

 856 
y_train.value_counts() 857 
wildfire.info() 858 
wildfire.isnull().any() 859 
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 860 
FFMC                 False 861 
DMC                  False 862 
DC                   False 863 
ISI                  False 864 
Temperature          False 865 
Relative humidity    False 866 
Wind                 False 867 
Class                False 868 
dtype: bool 869 

 870 
xgbc=xgb.XGBClassifier(objective='multi:softprob', 871 
                       learning_rate =0.6, 872 
                        n_estimators=800, 873 
                        max_depth=6, 874 
                        min_child_weight=0, 875 
                        gamma=0.2, 876 
                        subsample=0.9, 877 
                        colsample_bytree=0.7, 878 
                        nthread=40, 879 
                         seed=230) 880 
xgbc.fit(x_train,y_train) 881 
predictions = xgbc.predict(x_test)    882 
accuracy = accuracy_score(y_test, predictions)  883 
print("Accuracy: %.2f%%" % (accuracy * 100.0))                                                                    884 
      885 
Accuracy: 84.14% 886 
 887 
class_names = ['A', 'B', 'C','D','E','F'] 888 
disp = plot_confusion_matrix(xgbc, x_test, y_test, display_labels=class_names, cmap=pyplot.cm.Blues, 889 
xticks_rotation='vertical') 890 
pyplot.title('Testing set') 891 

 892 
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disp = plot_confusion_matrix(xgbc, x_train, y_train, display_labels=class_names, cmap=pyplot.cm.Blues, 893 
xticks_rotation='vertical') 894 
pyplot.title('Training set') 895 

 896 

 897 
shap_values = shap.TreeExplainer(xgbc).shap_values(x_test) 898 

shap.summary_plot(shap_values, x_test,class_names = class_names, plot_type='bar')899 

 900 
 901 
shap.summary_plot(shap_values[0], x_test, class_names=class_names,show=False) 902 
pyplot.gcf().axes[-1].set_box_aspect(50) 903 
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pyplot.gcf().axes[-1].set_aspect(100) 904 
pyplot.gcf().axes[-1].set_box_aspect(100)905 

 906 
shap.summary_plot(shap_values[1], x_test, class_names=class_names,show=False) 907 
pyplot.gcf().axes[-1].set_box_aspect(50) 908 
pyplot.gcf().axes[-1].set_aspect(100) 909 

pyplot.gcf().axes[-1].set_box_aspect(100)910 

 911 
 912 

shap.summary_plot(shap_values[2], x_test, class_names=class_names,show=False) 913 
pyplot.gcf().axes[-1].set_box_aspect(50) 914 
pyplot.gcf().axes[-1].set_aspect(100) 915 
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pyplot.gcf().axes[-1].set_box_aspect(100)916 

 917 
shap.summary_plot(shap_values[3], x_test, class_names=class_names,show=False) 918 
pyplot.gcf().axes[-1].set_box_aspect(50) 919 
pyplot.gcf().axes[-1].set_aspect(100) 920 
pyplot.gcf().axes[-1].set_box_aspect(100) 921 

 922 
shap.summary_plot(shap_values[4], x_test, class_names=class_names,show=False) 923 
pyplot.gcf().axes[-1].set_box_aspect(50) 924 
pyplot.gcf().axes[-1].set_aspect(100) 925 
pyplot.gcf().axes[-1].set_box_aspect(100) 926 
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 927 
shap.summary_plot(shap_values[5], x_test, class_names=class_names,show=False) 928 
pyplot.gcf().axes[-1].set_box_aspect(50) 929 
pyplot.gcf().axes[-1].set_aspect(100) 930 

pyplot.gcf().axes[-1].set_box_aspect(100)931 

 932 
 933 

 934 
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