
This is a preprint draft. The published article can be found at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003399  

Please cite this paper as:  

Naser M.Z. (2022). ““CLEMSON: An Automated Machine Learning (AutoML) Virtual Assistant for Accelerated, 

Simulation-free, Transparent, Reduced-order and Inference-based Reconstruction of Fire Response of Structural 

Members.” ASCE Journal of Structural Engineering. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003399. 

1 
 

CLEMSON: An Automated Machine Learning (AutoML) Virtual Assistant for 1 

Accelerated, Simulation-free, Transparent, Reduced-order and Inference-based 2 

Reconstruction of Fire Response of Structural Members 3 

M.Z. Naser, PhD, PE, M.ASCE 4 

Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA 5 

AI Research Institute for Science and Engineering (AIRISE), Clemson University, Clemson, SC 29634, USA 6 
E-mail: mznaser@clemson.edu, Website: www.mznaser.com 7 

Abstract 8 

This paper introduces CLEMSON, an automated machine learning (AutoML) virtual assistant 9 

(VA) that enables engineers to carry acCeLErated, siMulation-free, tranSparent, reduced-Order, 10 

and infereNce-based fire resistance analysis with ease. This VA learns from physical observations 11 

taken from real fire tests to bypass bottlenecks and ab initio calculations associated with traditional 12 

structural fire engineering methods. CLEMSON leverages competitive ML algorithm search to 13 

identify those most suited for a given problem and then blend them into a cohesive ensemble to 14 

realize faster and reduced-order assimilation of predictions – thereby attaining higher accuracy and 15 

reliability. In addition, this VA is designed to be transparent and hence is supplemented with 16 

explainability measures to allow users to identify key factors driving its rationale and predictions. 17 

Once fully realized, CLEMSON augments its inner workings into a graphical user interface that 18 

can be used in a coding-free manner and with enriched visualization tools to allow users to directly 19 

harness the power of ML without the need for special software. To showcase the merit of the 20 

proposed VA, CLEMSON is applied to assess classification and regression problems by means of 21 

evaluating fire resistance rating, as well as temperature rise history and deformation history of 22 

concrete-filled steel tubular (CFST) columns via five algorithms, namely: Extreme Gradient 23 

Boosted Trees, Light gradient boosted trees, Neural Networks, Random Forest, and TensorFlow. 24 

Finally, this work also introduces three new and functional performance metrics that are explicitly 25 

derived for structural fire engineering applications and hence can be used to cross-check the 26 

validity of ML models. 27 

Keywords: Machine learning (ML); Structural fire engineering; Ensemble; Columns; Explainable 28 

artificial intelligence (XAI). 29 

Introduction 30 

The advent of machine learning (ML) has launched exciting opportunities for engineers and 31 

scientists (Bishop 2007). One such opportunity that is of merit to explore is the development of 32 

ML-based virtual assistants (VA). These VAs can be thought of as tools with capabilities similar 33 

to those seen in their common counterparts of theoretical, analytical, or numerical (i.e., finite 34 

element (FE)) origins. In a way, ML-based VAs can be considered as a continuation of the natural 35 

evolution of existing models (Cuevas-Zuviría and Pacios 2020). At its basic form, one can think 36 

of VAs as means for accelerated and low-cost simulation-free tools to bypass the need for ab initio 37 

calculations (Botu and Ramprasad 2015).  38 
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Adopting ML into the domain of structural fire engineering has been explored in recent years 39 

(Chaudhary et al. 2021; Fu 2020; Naser 2021a; Panev et al. 2021). The cited works, along with 40 

others (Chaudhary et al. 2021; Jiang et al. 2021; Naser 2019a; Ouache et al. 2021; Su et al. 2021), 41 

developed and applied different ML algorithms to examine a collection of structural engineering 42 

phenomena often triggered because of fires. A deep dive into the main findings of such works 43 

reveals two observations worthy of note: 1) a rise in the number of publications that leverage ML, 44 

and 2) ML seems to provide an attractive method of tackling structural fire engineering problems. 45 

Given the above two observations, together with those realized through ongoing discussions and 46 

conference proceedings (e.g., International Association for Fire Safety Science (McNamee et al. 47 

2019) and the 2021 American Concrete Institute Spring Convention (ACI 2021)), the adoption of 48 

ML is expected to continue to soar in the coming years.  49 

Despite the success of ML in this domain, as well as similar domains (Litman 2014; Tarassoli 50 

2019), a few burning concerns continue to arise. For example, utilizing a particular algorithm to 51 

examine a phenomenon does not guarantee arriving at an ideal, let alone an optimal solution to a 52 

given problem. Building upon the No Free Lunch Theorem, which states that all optimization 53 

algorithms perform equally well when their performance is averaged across all possible problems, 54 

implies that there is not a single best algorithm (Wolpert and Macready 1997). Hence, it is of merit 55 

to explore multi-algorithmic search and ensemble learning to combine a series of algorithms into 56 

a ML model of higher accuracy, less vulnerability to overfitting, and better handling of missing or 57 

imbalanced data (Chou and Pham 2013; Polikar 2009).  58 

Another concern that is tied to ML can be encompassed by the fact that many of the existing ML 59 

models are often labeled as “Blackboxes” with little insights into their inner mechanisms or the 60 

rationale/logic used to justify their predictions (Dosilovic et al. 2018). As such, ML models, if to 61 

be effectively and confidently utilized, are expected to be transparent to allow users to fully 62 

understand their inner workings and extract possible “true” causation they may be able to reveal. 63 

The notion of transparency, and by extension explainability/interpretability, is also necessary to 64 

establish liability and fairness since fire and engineering projects entail legal and human 65 

components. A dedicated discussion on explainable and interpretable ML models can be found 66 

elsewhere (Doran et al. 2018; Naser 2021b). 67 

Scientists and engineers are expected to create intricate ML models with the growing need for 68 

larger and more accurate models. Such models are likely to be of complex topologies and in need 69 

of processing extensive databases. This translates into large energy consumption during training, 70 

development, storage, and deployment. Current works have estimated carbon emissions from 71 

training complex deep learning models to reach 150,000 Kg per model (Jackson 2019; Strubell et 72 

al. 2020). The reader is to note that 150,000 Kg of carbon emissions is equivalent to that emitted 73 

through the lifetime of five fuel-based vehicles (Strubell et al. 2020). Thus, and whenever possible, 74 

ongoing efforts are to favor energy-light algorithms or reduced-order techniques to allow the 75 

development of energy-friendly ML models (García-Martín et al. 2019).  76 
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In response to the lack of ML-based activities in existing curricula, fresh and senior scientists and 77 

engineers may not be well familiar with ML. This adds another layer of complication that may 78 

hinder the adoption and widespread of ML in this domain. Hence, it is thought of merit to develop 79 

ML tools that can be augmented into software, or applications (i.e., Apps), with easy-to-use 80 

graphical user interfaces (GUI) (Dudley and Kristensson 2018).  81 

A robust ML model not only performs well during its training process but also continues to perform 82 

well beyond its training and into its deployment. Several challenges could arise during the 83 

deployment of a ML model. For instance, the model may face scenarios that were not part of its 84 

training (e.g., beyond the range of data used during its development), which may jeopardize its 85 

effectiveness. Furthermore, the quality of real-life data may be of lower caliber or lesser 86 

completeness, and hence such a model could struggle in attaining similar prediction capability to 87 

that obtained during its training. Thus, there is a need to continue to monitor model performance 88 

to improve its predictive capability. This enables a given ML model to attain and possibly improve 89 

its inference capability (Wu et al. 2019).  90 

This work builds upon the above discussion and creates a blueprint for an AutoML-based VA 91 

(named CLEMSON) that can be used by scientists and engineers. Simply put, this paper introduces 92 

CLEMSON via a case study on CFST columns under fire conditions. In this case study, 93 

CLEMSON evaluates fire resistance rating, temperature rise, and deformation history of concrete-94 

filled steel tubular (CFST) columns. In this pursuit, five algorithms, namely: Extreme Gradient 95 

Boosted Trees, Light gradient boosted trees, Neural Networks, Random Forest, and TensorFlow, 96 

are examined to enable accelerated, simulation-free, transparent, reduced-order, and inference-97 

based analysis. The proposed framework is also supplemented with three new and functional 98 

performance metrics explicitly derived for fire resistance applications. 99 

Framework and Technical Details of CLEMSON AutoML 100 

This section articulates an overview of the big ideas behind CLEMSON, together with 101 

supplementary technical details.  102 

Big Ideas Behind CLEMSON AutoML 103 

In many scenarios, traditional (or simple) ML models have been reported to perform well when 104 

applied to structural fire engineering problems (Naser 2019b; Panev et al. 2021; Wu et al. 2021). 105 

Such models are not only easy to use but are also well-vetted. For the sake of this discussion, 106 

simple ML models can be thought of as 2D FE models that can perform well for general problems 107 

and hence negate the need for their more complex counterparts of 3D FE models. Adopting such 108 

models can come in handy as they nullify the need for developing overly complicated ML models.  109 

On the other hand, simple models may not be able to solve the problem on hand or at least perhaps 110 

fail to attain good performance scores. In parallel, simple models may not correctly uncover the 111 

underlying mechanisms of a given problem. The same can also trigger a few issues related to the 112 

poor performance of ML models in the long run (i.e., overfitting, bias, etc.).  113 
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In some instances, the choice behind selecting a ML algorithm may stem from a personal 114 

preference (or simply due to the user's familiarity with such an algorithm/programing language; in 115 

a similar manner to selecting a finite element (FE) package (i.e., ANSYS vs. ABAQUS)). Such a 116 

practice is not always tied to realizing the best possible solution nor gives the user/stakeholder a 117 

chance to vet the performance of their algorithm against other algorithms. Thus, it is of merit for 118 

the interested user to explore a variety of ML algorithms (especially those incorporating a mixture 119 

of architectures, and topologies, etc.) (Schmidhuber 2015). In such an approach, a tournament 120 

between selected algorithms can be carried out to enable the ranking of ML models into a 121 

“leaderboard” according to pre-specified criteria (i.e., performance metrics).  122 

Based on the above discussion, it may be inevitable to develop exotic ML models (e.g., complex 123 

deep neural networks), especially when simple models fail to perform adequately. These models 124 

require expensive resources. In fact, a recent work has noted that the development of exotic models 125 

cost can exceed $1.0 million per model and can take months/years to develop (Jackson 2019; 126 

Strubell et al. 2020). A more cynical look into such models is their need for user expertise to guide 127 

the development and deployment of these models, which may overwhelm users from our domain. 128 

Despite the higher costs of exotic models, they can be essential to overcoming specialized 129 

problems.   130 

A workaround exotic models is to leverage ensemble learning. In this methodology, a collection 131 

of ML algorithms can be merged/blended into an ensemble that harnesses the positive advantages 132 

of each algorithm and minimizes their collective disadvantages. Nowadays, ensembles can be 133 

much easier and cost-friendlier to develop than exotic models. Ensembles have been noted to 134 

outperform sole and deep learning models in complex settings (Abdollahi-Arpanahi et al. 2020; 135 

Ganaie et al. 2021; Hamori et al. 2018).  136 

Another dimension to ML adoption is the ability of the user (or engineer, for that matter) to 137 

understand the reasoning behind a model’s prediction. Unlike other simulation techniques such as 138 

the FE method, which is guided by physics principles and follows intuitive/rule-based 139 

explanations, ML continues to be primarily driven by the supplied data (and hence the notion of 140 

data-driven analysis). Thus, there is a need to allow users to understand the reasons behind a 141 

model’s or ensemble’s predictions. Peeking into a model/ensemble behavior brings the missing 142 

“trust” component between the user and ML into the picture, a key issue that haunts Blackbox ML 143 

models. The capability to explain or interpret ML models can be carried out by adopting modern 144 

techniques such as feature importance (Altmann et al. 2010), partial dependence plots (Scikit 145 

2021), Shapley values (Boehmke et al. 2020), among others.  146 

Furthermore, ML models often lack a graphical user interface that allows a user (as opposed to the 147 

model’s developer) to modify its architecture or to update its settings. This brings in a few issues; 148 

1) lack of transparency, 2) poor implementation/distribution, and 3) reiterates the need for 149 

extensive coding knowledge. Therefore, it is of importance to develop accessible ML models that 150 

can be easily tweaked and applied.  151 
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To overcome the above challenges, CLEMSON builds upon the success of ML-based platforms 152 

that enables the automated development of ML models. In this platform, CLEMSON develops a 153 

series of ML algorithms to explore the phenomenon on hand. Then, this VA identifies the best 154 

scoring models. Once ranked, these models can then be used individually or can also be merged 155 

into an ensemble. In a way, CLEMSON fosters the above discussed principles that: 1) sole/simple 156 

models can be used to examine a problem if deemed satisfactory, 2) carrying out a comparative 157 

and ensemble ML analysis is potentially tied to realize improved performance over than any of the 158 

component models separately (Hindman 2015), 3) advocating for explainable ML, and 4) creating 159 

easy-to-use ML-based tools that are coding-less (e.g., with simple GUI). Figure 1 demonstrates 160 

the inner workings of CLEMSON. 161 

 162 
Fig. 1 Flowchart of CLEMSON 163 

Selected Machine Learning Algorithms   164 

Five algorithms are selected for showcasing the applicability of CLEMSON herein. These 165 

algorithms are: Extreme Gradient Boosted Trees (ExGBT), Light Gradient Boosted Trees (LGBT), 166 

Keras Residual Neural Network (KNN), Random Forest (RF), and TensorFlow Deep Learning 167 

(TFDL). The algorithms are briefly discussed herein, given that their full descriptions can be found 168 

in their respective references and in (Hastie et al. 2011; Ketkar and Ketkar 2017). The reader is 169 

encouraged to remember that CLEMSON can incorporate other algorithms as well. In a way, this 170 

study does not focus on a particular set of algorithms, but rather these are thought of as mechanisms 171 

to operate CLEMSON. 172 

Extreme Gradient Boosted Trees (ExGBT) 173 

The ExGBT algorithm arranges the collected data into a tree format. In this format, each tree 174 

examines a sampled subset in each iteration of analysis (Freund and Schapire 1997). In each 175 

iteration, this algorithm ties successive trees to residual errors to focus the analysis on the most 176 

challenging predictions. This algorithm was supplemented with the following settings: learning 177 
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rate of 0.02, maximum tree depth of 5, subsample feature of 0.8, and 500 for the number of 178 

boosting stages. The ExGBT algorithm can be found online at (Scikit 2020a; XGBoost Python 179 

Package 2020).  180 

Light Gradient Boosted Trees (LGBT) 181 

Light gradient boosted trees (LGBT) is a newer algorithm to ExGBT and was developed by 182 

Microsoft. This algorithm requires little processing and has been noted to realize faster 183 

convergence and better handling of data (Freund and Schapire 1996). Like ExGBT, the LGBT 184 

successfully fits the residual errors from all previous iterations while incorporating two additional 185 

techniques to improve its performance. These techniques are known as gradient-based one-side 186 

sampling (to skips less informative points), and exclusive feature bundling (to group features in a 187 

near-lossless way) (Naser 2021a). The used algorithm can be found at (LightGBM 2020) with the 188 

following settings: learning rate = 0.1, maximum depth = “none”, number of boosting stages = 189 

500, with a Sigmoid activation function.  190 

Keras Residual Neural Network (KNN) 191 

Keras is an open-source library for developing neural network architectures (Li et al. 2018). In a 192 

residual architecture, a direct connection links data points to the target (response) variable to enable 193 

improved optimization by smoothing out the loss function. In the used KNN, a learning rate of 194 

0.03 was used, along with a Softmax activation function, one layer containing 64 neurons. KNN 195 

can be readily found at (Keras 2020). 196 

Random Forest (RF)  197 

The Random Forest (RF) algorithm is a classical ensemble learner that creates a sequence of 198 

decision trees (Liaw and Wiener 2002). The RF applies the majority voting principle. In this 199 

principle, the average result of all trees is calculated to arrive at a final outcome. The RF algorithm 200 

can be found at (Scikit 2020b) with the following settings; number of trees = 500, Gini impurity 201 

to facilitate quality of a split, a maximum depth of “none”, minimum leaf size, and maximum size 202 

for splits equals to 10 and “none”, respectively. 203 

TensorFlow Deep Learning (TFDL) 204 

A TFDL is an open-source and free neural network-based model that uses Deep Learning and is 205 

developed by Google (Abadi 2016). The used algorithm has neurons in each layer = 100, number 206 

of training examples = 100, optimizer = Conjugate gradient, early stopping window = 10, adaptive 207 

learning rate, and activation function of ReLu – and can be found at (TensorFlow 2020). 208 

Training and Evaluation Procedure 209 

In a ML evaluation, the adopted training procedure can be elemental to the success of the 210 

developed analysis, and by extension, the well-being of its outcome (e.g., predictivity, etc.). In 211 

addition, it is during the training process that the hyperparameters of ML models can get tuned 212 

(i.e., via a random search method as currently implemented by CLEMSON, etc.) (Peskova and 213 

Neruda 2019). Hence, the developed model/ensemble is required to minimize flaws attributed to 214 

data handling and training. Proper data handling ensures that the collected data is cleansed of 215 
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errors, outliers, and missing items and spreads across a wide range of practical applications, etc. 216 

(Witten et al. 2016).  217 

Appropriate training of a ML model starts by randomly shuffling and splitting the database into 218 

three sets (T: training, V: validation, and S: testing) of preferably unequal proportions. The largest 219 

two sets are often reserved for training and validating the model. The model is then independently 220 

tested against the last set (since it was not involved in the training and validation procedure). On 221 

the other hand, a k-fold cross-validation procedure can also be used. In such a procedure, the 222 

collected dataset is randomly split up into test and training sets of k groups, wherein the model is 223 

trained using k-1 sets and then validated on the last k set. This procedure is repeated k times until 224 

each unique set has been used as the validation set. Finally, the model performance is evaluated 225 

on the test dataset (which was kept away during the training procedure).  226 

Adopting the k-fold cross-validation method allows the model to train and to be validated on 227 

multiple datasets, which usually results in a more accurate model with better generalization 228 

abilities (less overfitting) than if the model is to be trained, validated, and tested on splits of a 229 

limited number of samples, and distributions. While CLEMSON can use any of the above two 230 

methods to train ML models, the results from a 10-fold cross-validation methodology is showcased 231 

in this study.  232 

Once a model/ensemble completes the training and testing procedure, its predictive capability can 233 

be examined via performance metrics. These metrics quantify the variation between model 234 

predictions to actual measurements using mathematical constructs (Cremonesi et al. 2010; 235 

Laszczyk and Myszkowski 2019; Schmidt and Lipson 2010). Given the derivation and nature of 236 

such constructs, metrics often have advantages and disadvantages, which complicates the selection 237 

of metrics. Thus, it is best to examine the predictive capability of ML models via a series of 238 

comparisons pertaining to metrics of varying settings (see Table 1) (Botchkarev 2019; Naser and 239 

Alavi 2020). All in, such metrics are often applied at the global level of ML model; as in to compare 240 

the performance of the model across all, or a portion of, its predictions.  241 

Table 1 List of selected performance metrics.  242 

Metric Expression  

Classification 

Area under the ROC curve 

(AUC) 
𝐴𝑈𝐶= ∑

1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 

where, FP: number of false positives, TP: number of true positives. 

Balanced Accuracy (BA) 𝐵𝐴 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
2

 

where, TN: number of true negatives. 

Log Loss Error (LLE) 
𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

 

where, M:  number of classes, c: class label, y: binary indicator (0 or 1) if c is 

the correct classification for a given observation. 
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Cumulative Clemson Metric 

(CCM) 
𝑛𝑜. 𝑜𝑓 𝑜𝑏𝑠𝑒𝑣𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ (

𝐹𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐹𝑅𝑅𝑎𝑐𝑡𝑢𝑎𝑙

60
= 0.0)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

Regression 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =  
∑ |𝐸𝑖|

𝑛
𝑖=1

𝑛
 

Symmetric Mean Absolute 

Percentage Error (SMAPE) 
𝑆𝑀𝐴𝑃𝐸 =

100

𝑛
 ∑|𝐸𝑖|/(𝑃𝑖 + 𝐴𝑖)

𝑛

𝑖=1

/2  

Root Mean Squared Error 

(RMSE) 𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

Coefficient of Determination 

(R2) 
𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)

2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 

A: actual measurements, P: predictions, n: number of data points, E = A-P.243 

In this work, three classification metrics and four regression metrics are used. The classification 244 

metrics are Balanced Accuracy (BACC), Area under the receiver operating characteristic curve 245 

(AUC), and Log Loss Error (LLE). The BACC is often used in binary and multiclass classification 246 

problems to deal with imbalanced datasets (such as that noted herein to identify fire resistance 247 

rating (FRR) of CFST columns such as 60 min, 120 min, 180 min, and 240 min). Hence, higher 248 

values of BACC are favorable as they imply good class predictivity. An area of unity for the AUC 249 

indicates a perfect score. The LLE penalizes for being confident in the wrong prediction, with a 250 

lower value for log loss being favorable.  251 

In addition to the aforenoted traditional metrics, a new functional metric is developed herein. 252 

Unlike the other metrics, which give statistical insights to the predictivity of the ML model at the 253 

global level, the newly developed metric considers the characteristics of the fire problem 254 

undertaken herein and is applied to individual observations. This metric examines the predicted 255 

FRR obtained from a ML model to the observed FRR from fire tests – as seen in Eq. 1. For 256 

example, say that a ML model predicts FRR of a given RC column to be 120 min; however, this 257 

column has 60 min as FRR (i.e., failed within 60 min during a fire test). In this particular example, 258 

the new metric (conveniently named Clemson Metric (CM)) turns a non-zero value; implying poor 259 

fitness.  260 

𝐶𝑙𝑒𝑚𝑠𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 (𝐶𝑀) =
𝐹𝑅𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐹𝑅𝑅𝑎𝑐𝑡𝑢𝑎𝑙

60
      Eq. 1 261 

where, CM is applicable for FRR ranging between 0.0-240 min, with a zero as a favorable 262 

performance that suggests a correct ML prediction. Negative scores of CM indicate conservative 263 

predictions, and positive scores indicate unconservative predictions.  264 

A companion metric to CM is the Cumulative CM (CCM), and this metric extends CM from 265 

individual observations to the global level of the ML model. The CMM compares the percentage 266 

of all observations that pass the CM metric (i.e., return zero) to the total number of observations 267 

examined by the ML model. Hypothetical cut-offs of <25%, 25-50%, 50-75%, and >75% (i.e., the 268 
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model predicts the correct FRR for all elements in the database with XX% accuracy or higher) are 269 

deemed of “poor”, “fair”, “strong”, and “excellent” fitness, respectively. In parallel to other 270 

traditional metrics, the CCM can be applied for training, validation, and testing stages, as well as 271 

to the whole database.  272 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑙𝑒𝑚𝑠𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 (𝐶𝐶𝑀) =
𝑛𝑜.𝑜𝑓 𝑜𝑏𝑠𝑒𝑣𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 (

𝐹𝑅𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐹𝑅𝑅𝑎𝑐𝑡𝑢𝑎𝑙

60
=𝑧𝑒𝑟𝑜)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
  Eq. 2 273 

On the other hand, the regression metrics are Mean Absolute Error (MAE), Symmetric Mean 274 

Absolute Percentage Error (SMAPE), Root Mean Squared Error (RMSE), and Coefficient of 275 

Determination (R2). Briefly, MAE evaluates the arithmetic average of the absolute errors and can 276 

be used for different scales. SMAPE estimates the error as a percentage and has a range of 0-200%, 277 

while RMSE evaluates the standard deviation of residuals in a scale-independent order. Finally, 278 

R2 is a scale-free metric that assesses the degree of association between measured and predicted 279 

values.  280 

Noting that the proposed ensemble will also be used to predict the continuous response of CFST 281 

columns (i.e., temperature-time and deformation-time history) as opposed to a specific value (say 282 

FRR), then predictions from the ML ensemble are recommended to be cross-checked via a new 283 

indicator named as the “maximum response deviation” (MRD). This new indicator evaluates ML 284 

predictions within a pre-specified range of real temperature-time and deformation-time 285 

observations. This indicator builds bounds based on the largest observation obtained (i.e., the 286 

temperature at core or displacement in the compression stage), then divides its value over equally 287 

spaced points in time of the duration of fire test (taken as 10 min herein). The outcome of this 288 

operation yields an upper and lower bound, wherein predictions from the model are to lay within. 289 

Model predictions are then compared across these bounds. If all predictions lay within the bound, 290 

then the model is said to have a perfect match. If <25%, 25-50%, 50-75%, and >75% of model 291 

predictions fall within these bounds, then the model is said to be of “poor”, “fair”, “strong”, and 292 

“excellent” match with observations. In a way, the MRD metric provides a dynamic indicator that 293 

relates to the observed performance of a single element and checks predictions against bounds 294 

derived for that specific element (vs. an arbitrary bound say at 5% error, or 10% error, etc.) to 295 

measure the quality of the model fitness. Examples of the newly developed metrics are provided 296 

in a later section.  297 

In CLEMSON, ML models are ranked via their scores in each of the above metrics, and the 298 

highest-ranking model in all metrics gets to the top of the leaderboard. The best performing models 299 

are then blended into an ensemble. For regression problems, the ensembling method used herein 300 

averages the predictions of the best three ranked algorithms in CLEMSON’s Leaderboard. On the 301 

other hand, the same ensemble applies the majority vote mechanism for classification problems. 302 

For example, say that two algorithms predict that a column fails at 60 min, and one predicts that 303 

the same column fails at 120 min. In this instance, the ensemble would predict that the column 304 

fails at 60 min (i.e., 2 votes vs. 1 vote), and hence the use of an odd number of algorithms becomes 305 

handy. For completion, say that a user options to use an even number of algorithms, then a 306 
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workaround would be to weigh predictions from the higher ranking algorithms with higher weights 307 

to allow for a weighted voting mechanism that would break any arising ties. 308 

Deployment  309 

Once the models and ensemble complete their evaluation procedure, the ensemble is then deployed 310 

into production. In this study, CLEMSON starts the analysis by classifying the anticipated fire 311 

resistance of a particular column to fall into either 60, 120, 180, or 240 min. Then, CLEMSON 312 

goes on to map/predict the temperature-time and deformation-time response of such a column via 313 

a supervised learning manner that can be viewed in a GUI. The GUI can be in terms of software-314 

like or application-like (App) interface, or that of a simpler interface such as spreadsheets. The 315 

notion of GUI is set to allow cross-platform deployment of the developed ML ensemble. The use 316 

of classical spreadsheets can be of high merit since most practicing users already utilize such 317 

spreadsheet programs (Excel, etc.) and hence is showcased in this study. Finally, the ensemble is 318 

augmented with explainability tools during this stage.  319 

Maintenance and Upkeep 320 

A good practice is to keep an eye on the performance of the developed model/ensemble while 321 

being deployed. In the instance that model performance degrades with the addition of new 322 

observations, then the user may opt to retrain the model. In this work, an ensemble is expected to 323 

be periodically maintained throughout its lifecycle.  324 

Future Features  325 

Future versions of CLEMSON will be expected to support data handling and feature engineering, 326 

tools for model monitoring, and support for unsupervised learning problems.  327 

Description of Database 328 

This section describes the database to be used in this work as a case study. This database covers 329 

CFST columns that were exposed to standard fires. Further information on this database is outlined 330 

herein. 331 

In total, 102 columns were collected from the open literature (Han et al. 2009, 2003; Lie and 332 

Chabot 1992; Wan et al. 2017). All selected columns were of hot-rolled tubing and filled with 333 

concrete materials of varying strength of 23-100 MPa. The temperature-time and deformation-334 

time of all columns were obtained from their original resources (see Table 2 and Fig. 2). The 335 

frequency of all selected features is shown in Fig. 2, along with the correlation matrix and the 336 

scatter matrix of all features. The following features for each column were also collected;  337 

Geometric features: 338 

1) column diameter, D,  339 

2) column slenderness, n,  340 

3) tube thickness, t,  341 

Materials features: 342 

4) concrete compressive strength, fc,  343 
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5) yield strength of steel, fy, 344 

6) steel reinforcement ratio, r,  345 

Loading features: 346 

7) restraint conditions, K,  347 

8) eccentricity, e,  348 

9) level of applied loading, P,  349 

Table 2 Statistics on collected database for CFST columns  350 

 
D 

(mm) 

t 

(mm) 
n 

fc 

(MPa) 

fy 

(MPa) 
r (%) e (%) P (%) FR (min) 

Minimum 141.0 0.5 18.8 23.8 300.0 0.0 0.0 0.1 23.0 

Maximum 406.0 1.0 94.0 35.5 569.0 5.2 0.8 0.8 294.0 

Average 244.5 0.7 41.2 30.6 355.1 0.7 0.1 0.4 104.3 

Standard 

deviation 
67.8 0.2 18.9 3.3 62.9 1.3 0.2 0.1 59.0 

Skewness 0.7 0.9 1.0 -0.4 1.9 2.0 3.2 0.6 0.8 

 351 

 352 
(a) Frequency of features 353 
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 354 
(b) Correlation matrix 355 

 356 
(c) Scatter matrix 357 

Fig. 2 Insights into the selected database 358 

Model Performance 359 

As discussed in an earlier section, the performance of the developed ensemble is examined on two 360 

fronts. The first is against performance metrics that are listed in Table 1, and the second is by 361 
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applying two sets of visual comparisons (via goodness of agreement between predicted and 362 

observed histories and through “maximum response deviation” (MRD) indicator) to examine 363 

predictions from the ensemble across the full temperature-time and deformation-time history of a 364 

collection of CFST columns. 365 

As one can see from the results listed in Table 3, the developed ensemble outperforms that of the 366 

sole ML models in the majority of comparisons and for most of the selected performance metrics 367 

in the cases of predicting FRR and deformation-history of fire exposed CSFT columns. In parallel, 368 

the ensemble scores a close second to the LGBT model in capturing the temperature-time history 369 

of columns as a function of fire exposure. This behavior is due to the ensemble averaging the 370 

outcome of the three highest ranking models applied herein ExGBT, RF, and LGBT. For the sake 371 

of this discussion, a user could have opted to use the LGBT model instead of the ensemble since 372 

each examined phenomenon is independent of the others; however, this practice was not followed 373 

herein to maintain a more coherent comparison using one ensemble. 374 

In addition to the above examination listed in Table 3, which primarily targets the overall 375 

predictivity of the ensemble, an additional layer of validation is applied in Fig. 3. This additional 376 

validation applies a visual perspective to the performance of the predicted temperature-time and 377 

deformation-time when compared to observations from fire tests. Figure 3 shows that the 378 

comparison between actual observations from fire tests and those predicted by ML are in good 379 

agreement. Overall, predictions from the ML ensemble match the trends of temperature rise and 380 

deformation progression during the fire.  381 

Special attention can be paid to ensemble predictions towards the point of failure of each column. 382 

It is at this point that ensemble predictions can deviate a bit from those observed. This is due to 383 

the fact that CLEMSON, at this stage, ties FRR (i.e., 60, 120, 180, and 240 min) as a failure 384 

criterion associated with each column – as opposed to the actual failure of the column. Tying the 385 

failure to fire rating continues to be the practice of choice thus far, and hence is adopted here. A 386 

look into ensemble predictions at the point of FRR shows a much closer accuracy than that at the 387 

point of failure – implying that CLEMSON satisfies its pre-set settings for most of the 388 

comparisons. Future versions of CLEMSON can be tweaked to follow a more performance-based 389 

approach. 390 

In addition, Fig. 3 also provides a new lens to another set of visual comparisons by applying the 391 

“maximum response deviation” (MRD) indicator to examine predictions from the ensemble across 392 

the full temperature-time and deformation-time history of a sample of CFST columns. As one can 393 

see, this figure shows how the predictions from ML fall within the MRD bounds as an additional 394 

means to assess ML predictions at the micro-level (specific intervals of 10 min each). Figure 3 395 

also displays a comparison between the different MRD scores and how such scores quantify the 396 

degree of agreement between predictions and real observations. Finally, the reader may notice that 397 

the bounds for MRD tend to be narrower with longer fire exposures. This is natural as it reflects 398 

the derivation process of this dynamic metric discussed earlier, which subjects scrutiny to columns 399 
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surviving long fires since accurately capturing fire response to such columns is often complex as 400 

they tend to undergo convoluted conditions such as creep etc. (Buchanan and Abu 2017).  401 
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Table 3 List of selected performance metrics (Note – T: Training sample, V: Validation sample, S: Testing sample).  402 

Fire Resistance Rating 

Metric Ensemble ExGBT LGBT KNN RF TFDL 

AUC 𝐴𝑈𝐶= ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 

T V S T V S T V S T V S T V S T V S 

0.906 0.781 0.817 0.867 0.771 0.810 0.860 0.758 0.746 0.835 0.767 0.813 0.797 0.751 0.658 0.895 0.766 0.752 

Balanced 

Accuracy 𝐵𝐴 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
2

 
0.505 0.421 0.427 0.447 0.350 0.300 0.443 0.374 0.360 0.426 0.412 0.427 0.378 0.355 0.260 0.493 0.405 0.300 

Log Loss (LL) 

Error 
𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

 0.967 1.132 1.186 0.995 1.165 1.213 0.957 1.184 1.266 1.003 1.179 1.192 1.143 1.241 1.431 1.140 1.317 1.514 

Cumulative 

Clemson 

Metric (CCM) 

𝑛𝑜. 𝑜𝑓 𝑜𝑏𝑠𝑒𝑣𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ (
𝐹𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐹𝑅𝑅𝑎𝑐𝑡𝑢𝑎𝑙

60
= 0.0)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 0.732 0.800 0.671 0.711 0.701 0.621 0.683 0.651 0.476 0.651 0.600 0.471 0.516 0.556 0.333 0.783 0.700 0.571 

Deformation-time history 

Metric Ensemble ExGBT LGBT KNN RF TFDL 

Mean Absolute 

Error (MAE) 𝑀𝐴𝐸 =  
∑ |𝐸𝑖|𝑛

𝑖=1

𝑛
 

T V S T V S T V S T V S T V S T V S 

1.184 1.793 2.543 1.509 1.878 2.857 1.857 2.479 3.267 4.752 5.667 6.428 3.698 4.038 5.149 2.802 3.337 4.653 

Symmetric 

Mean Absolute 

Percentage 

Error (SMAPE) 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑|𝐸𝑖|/(𝑃𝑖 + 𝐴𝑖)

𝑛

𝑖=1

/2  36.247 35.37 44.60 34.77 38.30 49.64 47.23 46.34 55.45 73.94 76.67 92.25 68.94 61.85 69.52 60.00 56.08 75.93 

Root Mean 

Squared Error 

(RMSE) 
𝑅𝑀𝑆𝐸 =  √

∑ 𝐸𝑖
2𝑛

𝑖=1

𝑛
 2.008 3.603 8.182 2.619 3.589 8.097 3.106 4.607 8.188 5.732 8.057 11.078 4.638 6.210 10.612 3.673 5.173 9.325 

Coefficient of 

Determination 

(R2) 

𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 0.964 0.903 0.712 0.938 0.898 0.711 0.913 0.850 0.712 0.704 0.571 0.472 0.806 0.736 0.516 0.878 0.812 0.626 

Temperature-time history 

Metric Ensemble ExGBT LGBT KNN RF TFDL 

Mean Absolute 

Error (MAE) 𝑀𝐴𝐸 =  
∑ |𝐸𝑖|𝑛

𝑖=1

𝑛
 

T V S T V S T V S T V S T V S T V S 

17.563 16.296 17.498 18.129 16.127 18.256 14.446 14.967 15.646 27.449 27.145 30.747 24.392 22.148 22.299 82.871 73.253 69.560 

Symmetric 

Mean Absolute 

Percentage 

Error (SMAPE) 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑|𝐸𝑖|/(𝑃𝑖 + 𝐴𝑖)

𝑛

𝑖=1

/2  14.547 13.510 12.705 13.594 12.983 12.834 12.840 12.802 12.321 23.334 23.095 22.037 19.756 18.411 15.837 50.067 47.663 42.015 

Root Mean 

Squared Error 

(RMSE) 

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

 

27.271 23.567 25.593 27.709 23.259 28.196 24.601 22.463 23.254 36.488 37.553 42.835 36.491 32.112 32.711 94.179 85.993 83.146 

Coefficient of 

Determination 

(R2) 

𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 

 

0.954 0.958 0.957 0.953 0.959 0.948 0.963 0.962 0.965 0.918 0.892 0.881 0.918 0.922 0.931 0.453 0.439 0.553 

403 
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(a) C2 [MRD 93% (strong agreement)] [FRR less than 60 min] (b) C2 [MRD 100% (strong agreement)] [FRR less than 60 min] 

  

(c) C17 [MRD 90% (excellent agreement)] [FRR at 60 min] (d) C17 [MRD 89% (excellent agreement)] [FRR at 60 min] 

  
(e) C15 [MRD 89% (excellent agreement)] [FRR at 60 min] (f) C15 [MRD 62% (strong agreement)] [FRR at 60 min] 

  
(g) C5 [MRD 75% (excellent agreement)] [FRR at 60 min] (h) C5 [MRD 100% (excellent agreement)] [FRR at 60 min] 
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(i) C20 [MRD 55% (strong agreement)] [FRR at 60 min] (j) C20 [MRD 45% (fair agreement)] [FRR at 60 min] 

  
(k) C29 [MRD 40% (fair agreement)] [FRR at 120 min] (l) C29 [MRD 39% (fair agreement)] [FRR at 120 min] 

  

(m) C23 [MRD 23% (poor) agreement] [FRR at 120 min] (n) C23 [MRD 54% (fair agreement)] [FRR at 120 min] 

Fig. 3 Additional validation of CFST columns response to fire [taken from the works of  Lie and Chabot (Lie and Chabot 1992)]404 
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Insights into Ensemble’s Explainability 405 

Once the developed ensemble is deemed acceptable, as noted in the previous section, then the 406 

ensemble is further examined herein. Special regard is given to the explainability of the ensemble 407 

by means of exploring feature importance and partial dependence plots of key features governing 408 

FRR, as well as those associated with reconstructing temperature-time, and deformation-time 409 

history of CFST columns.  410 

Feature Importance  411 

In a ML analysis, a model (or ensemble) consists of a number of features, each of which is expected 412 

to make a unique contribution towards the outcome of model prediction (Altmann et al. 2010). 413 

Simply, feature importance presents the extent to which its features influence predictions from the 414 

developed ensemble. Such importance can be measured by evaluating the increase of a model’s 415 

prediction error after systematically permuting all of its features (Altmann et al. 2010). In this 416 

evaluation, a feature may score a high value if permuting its values increases the model error – 417 

thereby deeming such feature as “important” and vice versa. Hence, by understanding the influence 418 

of each feature, one can interpret model’s predictions. 419 

As one can see from Fig. 4a, the ensemble developed to predict FRR of CFST columns is 420 

dependent upon seven features, namely P, fc, D, fy, k, n, t, r, and e, which they scored: 100, 92, 90, 421 

82, 74, 60, 40, 29, and 12%, respectively. One should note that the same figure also shows some 422 

variation in the importance of each feature importance as compared by the ensemble and other ML 423 

models. Despite such variation, notably that faced by the RF model, there seems to be an overall 424 

agreement in the magnitude of feature importance values; therefore, implying consistency across 425 

the different models. This also shows the merit in exploring a series of algorithms as opposed to 426 

favoring a sole algorithm.  427 

Figure 4b also shows importance scores for features responsible for reconstructing temperature-428 

time history of CFST columns. The thermal response of CFST columns is seen to be primarily 429 

governed by the exposure time to fire, diameter, and thickness of columns (in this order), with 430 

other features having minimal impact. This analysis meshes with the fact that the thermal response 431 

of CFST columns is indeed a function of fire exposure time and size of the column, as noted by 432 

(Han et al. 2009; Kodur and Naser 2020; Lu et al. 2009). Since all selected columns were exposed 433 

to standard fires, made of hot-rolled tubes and plain normal strength concrete, then the effect of 434 

concrete type, boundary conditions, etc., can be normalized. However, the reader is to note that 435 

the same methodology could be extended to other structural elements exposed to other heating 436 

conditions.   437 

On the other hand, Fig. 4c displays feature importance for deformation-time history of CFST 438 

columns. Unlike the relatively smaller number of features governing the thermal response of 439 

columns, the deformation-time history is seen to be governed by exposure time, P, D, t, and k. 440 

these additional features reflect the naturally complex nature of the mechanical response of CFST 441 

columns under fire conditions (Han et al. 2013; Wan et al. 2017). The feature importance analysis 442 

also shows consistency among the ensemble and other algorithms.  443 
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(a) Fire resistance rating (FRR) (b) Temperature-time history of CFST columns 

 
(c) Deformation-time history of CFST columns 

Fig. 4 Insights into feature importance 444 
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Partial Dependence Plots (PDP) 445 

The partial dependence plot (PDP) is another tool that can shed insights into a ML model’s 446 

explainability. A PDP portrays an individual feature's marginal effect on model predictions while 447 

holding the other features constant (Friedman 2001). The outcome of a PDP can also be used to 448 

reveal the type of relationship a feature has on model predictions (e.g., linear, nonlinear, etc.). A 449 

PDP helps determine the transition in a model’s predictive performance to the change in the 450 

feature(s) (Friedman 2001). Figure 5 shows PDPs for all features responsible for reconstructing 451 

temperature-time and deformation-time history of CFST columns (Scikit 2021)).  452 

As expected, Fig. 5a shows a positive linear relationship between exposure time and temperature 453 

rise in CFST columns. The same figure also shows how increasing tube diameter size tends to lead 454 

to a reduction in temperature rise at the core of CFST columns. This is in response to the fact that 455 

bigger columns can hold a larger mass of concrete. Such columns tend to require higher thermal 456 

energy to increase core temperature in response to the high thermal capacity of concrete. Acquiring 457 

higher thermal energy is positively tied to a more prolonged fire exposure. A clear transition occurs 458 

at 65% of the normalized diameter size (which corresponds to a diameter of 219 mm). This cut-459 

off point shows that temperature rise at the core seems to stagger in columns of diameters larger 460 

than 219 mm. Finally, given the small thickness of the tube, the partial dependence of this feature 461 

seems to have a minor effect on temperature rise in CFST columns. A look into this PDP shows a 462 

good match between the ensemble’s rationale and guiding physics principles.  463 

 464 
(a) Temperature-time history 465 
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 466 
(b) Deformation-time history 467 

Fig. 5 Insights from partial dependence plots 468 

On the deformation front, Fig. 5b shows that the axial deformation of plain CFST columns is a 469 

function of exposure time, P, D, t, and k (as noted in the previous section). In addition, this figure 470 

depicts the complex relationship between exposure time and axial deformation. Up to about 40% 471 

of a typical column’s exposure under standard fires is associated with positive deformation (i.e., 472 

expansion), with a peak taking place within the first 10%-20% range of the exposure, followed by 473 

a contraction stage that accelerates failure. This also means that once a CFST reaches its maximum 474 

expansion, one can confidently estimate the failure point of such a column. In addition, smaller 475 

magnitudes of loading are also associated with an expansion of columns, while larger load levels 476 

tend to induce faster contraction of columns under fire in response to accelerated creep effects 477 

(Kodur et al. 2020). The influence of tube diameter and thickness, as well as boundary conditions, 478 

is steady and not as influenceable as the aforenoted features.  479 

Ensemble’s Graphical User Interface (GUI) 480 

Finally, the developed ensemble was integrated into a spreadsheet (tool) to be used through the 481 

Excel program. This tool operates by inputting the “inputs” variables, which then are used to 482 

evaluate FRR, and corresponding thermal and mechanical response histories. This spreadsheet is 483 

presented in Fig. 6 and can provide users with a means to deploy this ensemble. Given that the 484 

developed ensemble does not require carrying out a thermo-mechanical coupled analysis, meshing 485 

or otherwise, one can appreciate the attractiveness of the developed ensemble, especially when 486 

compared to other methods of analysis such as those based on the finite difference (FD) or FE 487 

methods, or those of iterative nature. For completeness, the developed spreadsheet will be attached 488 

to this publication and can be freely downloaded from this research group’s website.  489 
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  490 
Fig. 6 GUI of the developed spreadsheet 491 

Conclusions 492 

This paper presents CLEMSON – an AutoML virtual assistant that enables engineers to carry out 493 

acCeLErated, siMulation-free, tranSparent, reduced-Order, and infereNce-based fire resistance 494 

analysis. CLEMSON leverages competitive, and ensemble ML algorithm search and is 495 

supplemented with explainability measures, as well as GUI capabilities. For the purpose of this 496 

work, CLEMSON is applied to evaluate the fire resistance rating, temperature-time, and 497 

deformation-time history of CFST. The results of this analysis infer the suitability and applicability 498 

of CLEMSON as cross-checked against observations from real fire tests and traditional and new 499 

functional performance metrics. The following list of inferences can also be drawn from the 500 

findings of this study: 501 

• AutoML methods, when properly applied, present a new opportunity that facilitates the 502 

acceptance and widespread of ML into the structural fire engineering domain. 503 

• This study shows the merit of adopting multi-algorithm/multi-metric ML analysis.  504 

• Utilizing ensemble learning is shown to yield favorably improved performance as 505 

compared to individual ML models. 506 

• Applying the newly derived functional performance metrics can aid in adding a new layer 507 

of verification to ML predictions.  508 

• Fire resistance of CFST columns is seen to be governed by exposure time, load level, tube 509 

diameter, and thickness, as well as boundary conditions. 510 

• Under standard fires, up to about 40% of a typical CFST column’s is associated with 511 

expansion, with a peak taking place within the first 10%-20% range of the exposure, 512 

followed by a contraction stage towards failure. 513 
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